Rietveld Refinement Analysis of Lampung Natural Zeolite Catalyst Impregnated Fe with Diffraction Method Using MAUD Software

Lisa Adhani, Ahmad Fauzi, Dovina Navanti, Tyastuti Sri Lestari


This research characterizes the space group and R-phase crystal structure using the XRD method and Rietveld refinement. Rietveld improvements using the Material Analysis Using Diffraction (MAUD) software are acceptable if the Rwp < 15% and Sig < 2%. MAUD is a diffraction/reflectivity analysis program based primarily on the Rietveld method and here uses X-ray reflectivity data on materials. The intensity of the diffraction data of the powder sample is the appropriate reflection intensity so that the atomic structure of the crystalline material can be determined based on the Le bail characterization technique. The reflectance intensity of this Fe/Zeolite is Rw = 9.51% and Sig = 1.76%. XRD analysis on Lampung activated natural Zeolite before impregnation showed a monoclinic clinoptilolite crystal phase, which gives the lattice parameters on a≠b≠c axis, axis angle α=γ=90o≠β. The Fe/zeolite in this study is a natural zeolite from Lampung, which was activated and then impregnated with Fe. The Fe/Zeolite catalyst Rietveld Refinement results showed Nepheline's closest crystal phase, which gave the lattice parameters a=b≠c, axis, angle α=β=90o; γ=120o, the shape is similar to the hexagonal crystal structure (HCP). These results can be used as an initial reference for the study of the crystallization diffraction pattern in the further development of this catalyst.


Material; crystal; structure; clinoptilolite; nepheline.

Full Text:



T. Elysabeth and G. Ramayanti, Modification of Lampung and Bayah natural zeolite to enhance the efficiency of removal of ammonia from wastewater, Asian Journal of Chemistry, vol. 31, no. 4, pp. 873-878, 2019.

I. Aziz, L. Adhani, T. Yolanda, and N. Saridewi, Catalytic cracking of Jatropa curcas oil using natural zeolite of Lampung as a catalyst, in IOP Conference Series: Earth and Environmental Science, 2019, vol. 299, no. 1: IOP Publishing, p. 012065.

P. Rozek, M. Król, and W. Mozgawa, Geopolymer-zeolite composites: A review, Journal of cleaner production, vol. 230, pp. 557-579, 2019.

E. Assar, A. Meysami, and M. Zare, Morphology analysis and characterization of clinoptilolite/polyvinylpyrrolidone-zeolite composite nanofibers, Journal of Materials Engineering and Performance, vol. 29, no. 7, pp. 4233-4240, 2020.

S. M. Al-Jubouri, B. I. Waisi, and S. M. Holmes, Rietveld texture refinement analysis of linde type a zeolite from X-ray diffraction data, J. Eng. Sci. Technol, vol. 13, pp. 4066-4077, 2018.

S. KP Veerapandian, N. De Geyter, J.-M. Giraudon, J.-F. Lamonier, and R. Morent, The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: a review, Catalysts, vol. 9, no. 1, p. 98, 2019.

R. Taj, E. Pervaiz, and A. Hussain, Synthesis and catalytic activity of IM-5 zeolite as naphtha cracking catalyst for light olefins: a review, J Chem Soc Pak, vol. 42, no. 2, pp. 305-316, 2020.

A. Dutta et al., Microstructural evolution of proton irradiated Fe-2.25 Cr–1Mo characterized using synchrotron XRD (SXRD), Radiation Physics and Chemistry, vol. 184, p. 109459, 2021.

M. Sivakumar and A. Dasgupta, Selected Area Electron Diffraction, a technique for determination of crystallographic texture in nanocrystalline powder particle of Alloy 617 ODS and comparison with Precession Electron Diffraction, Materials Characterization, vol. 157, p. 109883, 2019.

H. R. Powell, A beginner’s guide to X-ray data processing, The Biochemist, vol. 43, no. 3, pp. 46-50, 2021.

D. Jin, C.-L. Myung, J.-h. Kim, and S. Park, Physicochemical analysis of two aged diesel particulate filters placed at close coupled and under floor positions of the vehicles, International Journal of Automotive Technology, vol. 20, no. 2, pp. 327-335, 2019.

S. Barden, J. Williams, J. Arns, and W. Colburn, Tunable gratings: imaging the universe in 3-D with volume-phase holographic gratings, in Imaging the Universe in Three Dimensions, 2000, vol. 195, p. 552.

N. F. Hayazi, Y. Wang, and S. L. I. Chan, Unlocking the metastable phases and mechanisms in the dehydrogenation process of titanium hydride, Materials Characterization, vol. 161, p. 110128, 2020.

O. A. Rahal, P. A. Williams, C. E. Hughes, B. M. Kariuki, and K. D. Harris, Structure determination of multicomponent crystalline phases of (S)-Ibuprofen and l-Proline from powder x-ray diffraction data, augmented by complementary experimental and computational techniques, Crystal Growth & Design, vol. 21, no. 4, pp. 2498-2507, 2021.

M. Marciszko-Wiąckowska, A. Oponowicz, A. Baczmański, M. Wróbel, C. Braham, and R. Wawszczak, Multireflection grazing-incidence X-ray diffraction: a new approach to experimental data analysis, Journal of Applied Crystallography, vol. 52, no. 6, pp. 1409-1421, 2019.

M. Johnson et al., Cation exchange, dehydration, and calcination in clinoptilolite: In situ X-ray diffraction and computer modeling, The Journal of Physical Chemistry B, vol. 107, no. 4, pp. 942-951, 2003.

K. T. Tait, E. Sokolova, F. C. Hawthorne, and A. P. Khomyakov, The crystal chemistry of nepheline, The Canadian Mineralogist, vol. 41, no. 1, pp. 61-70, 2003.

S. Anand, S. Pauline, V. M. Vinosel, and M. A. Janifer, Structural rietveld refinement and vibrational study of M-type BaFe12O19 nanoparticles, Materials Today: Proceedings, vol. 8, pp. 476-483, 2019.

T. Vershinina, A. Boev, and M. Ivanov, Crystal structure of a new Mo10Ni3C3B phase, Vacuum, vol. 172, p. 109034, 2020.

H. Naji, J. Khalil-Allafi, and V. Khalili, Microstructural characterization and quantitative phase analysis of Ni-rich NiTi after stress assisted aging for long times using the Rietveld method, Materials Chemistry and Physics, vol. 241, p. 122317, 2020.

F. Hadef and M. Ans, X-ray analysis and Rietveld refinement of ball milled Fe50Al35Ni15 powder, Surfaces and Interfaces, vol. 26, p. 101303, 2021.

A. I. Saville et al., MAUD rietveld refinement software for neutron diffraction texture studies of single-and dual-phase materials, Integrating Materials and Manufacturing Innovation, vol. 10, no. 3, pp. 461-487, 2021.

N. Hidayat, A. Hidayat, S. Hidayat, N. Mufti, A. Taufiq, and H. Heriyanto, Assessing Rietveld refinement results on silicon carbide nanoparticles produced by magnesiothermal treatment, in Journal of Physics: Conference Series, 2020, vol. 1595, no. 1: IOP Publishing, p. 012032.

H. Nikmanesh, E. Jaberolansar, P. Kameli, A. G. Varzaneh, M. Mehrabi, and M. Rostami, Structural and magnetic properties of CoFe2O4 ferrite nanoparticles doped by gadolinium, Nanotechnology, vol. 33, no. 4, p. 045704, 2021.

N. Amri, J. Massoudi, K. Nouri, M. Triki, E. Dhahri, and L. Bessais, Influence of neodymium substitution on structural, magnetic and spectroscopic properties of Ni–Zn–Al nano-ferrites, RSC Advances, vol. 11, no. 22, pp. 13256-13268, 2021.

N. R. Ardiani, S. Setianto, B. Santosa, B. M. Wibawa, C. Panatarani, and I. M. Joni, Quantitative analysis of iron sand mineral content from the south coast of Cidaun, West Java using rietveld refinement method, in AIP Conference Proceedings, 2020, vol. 2219, no. 1: AIP Publishing LLC, p. 040003.

L. Adhani, R. Masrida, N. P. Angela, and R. R. Nugroho, Analisis Efektivitas Katalis Fe/Zeolit Pada Cracking Minyak Jelantah Dalam Pembuatan Biofuel, PENDIPA Journal of Science Education, vol. 4, no. 1, pp. 7-11, 2020.

L. Adhani, Synthesisi and charecterization of lampung natural Fe/zeolit catalyst with impregnation method, 2019.

S. Dub, N. Cherednichenko, D. Kiseleva, N. Gorbunova, T. Y. Gulyaeva, and L. Deryugina, Trace element behaviour in acidic leachates (acetic, nitric and hydrochloric) from siliciclastic-carbonate rocks of the Upper Riphean Uk formation in the Southern Urals, LITHOSPHERE (Russia), vol. 19, no. 6, pp. 919-944, 2020.

A. Vaitkus, A. Merkys, and S. Grazulis, Validation of the crystallography open database using the crystallographic information framework, Journal of applied crystallography, vol. 54, no. 2, 2021.

S. Grazulis, A. Merkys, and A. Vaitkus, Crystallography Open Database, Handbook of Materials Modeling Methods Theory and Modeling, pp. 1863-1881, 2020.

Ð. Abubakriev, Ð. Коizhanova, D. Маgomedov, Ðœ. Еrdenova, and N. Abdyldaev, Leaching of gold containing ores with application of oxidation activators, Kompleksnoe Ispolzovanie Mineralnogo Syra, vol. 310, no. 3, pp. 10-15, 2019.

G. Kirov, L. Dimova, and T. Stanimirova, Gallery character of porous space and local extraframework configurations in the HEU type structure, Microporous and Mesoporous Materials, vol. 293, p. 109792, 2020.

K. Luberda-Durnas, M. Szczerba, M. Lempart, Z. Ciesielska, and A. Derkowski, Layer stacking disorder in Mg-Fe chlorites based on powder X-ray diffraction data, American Mineralogist: Journal of Earth and Planetary Materials, vol. 105, no. 3, pp. 353-362, 2020.

K. Hadjadj and S. Chihi, Rietveld refinement based quantitative phase analysis (QPA) of Ouargla (part of Grand Erg Oriental in Algeria) dunes sand, Silicon, pp. 1-9, 2020.

M. N. Akhtar, M. Babar, S. Qamar, Z. ur Rehman, and M. A. Khan, Structural Rietveld refinement and magnetic features of prosademium (Pr) doped Cu nanocrystalline spinel ferrites, Ceramics International, vol. 45, no. 8, pp. 10187-10195, 2019.

A. Abidin, N. Ahmad, M. N. Akhtar, M. Shahid Nazir, and M. Hussain, Evaluations of the Thermal, Rietveld Structural, Microstructural and Magnetic Properties of Cu0. 5Co0. 5BixFe2− xO4 Spinel Nanoferrites, Journal of Electronic Materials, vol. 49, no. 1, pp. 807-818, 2020.

H. Pelckmans, Review of F. Fontan and RF Martin (2017): Minerals with a French Connection. The Canadian Mineralogist Special Publication 13, joint publication of the Mineralogical Association of Canada (Québec, Canada) and the Société française de Minéralogie et de Cristallographie (Paris, France). ISBN: 978-0-921294-59-7 ed: E. Schweizerbartsche Verlagsbuchhandlung Science Publishers, 2019.

S. K. Wahono, J. Stalin, J. Addai-Mensah, W. Skinner, A. Vinu, and K. Vasilev, Physico-chemical modification of natural mordenite-clinoptilolite zeolites and their enhanced CO2 adsorption capacity, Microporous and Mesoporous Materials, vol. 294, p. 109871, 2020.

K. Brooks, Minerals explained 60: Nepheline, Geology Today, vol. 37, no. 4, pp. 153-158, 2021.

D. Khatua, R. Choudhary, and P. G. R. Achary, Styrene butadiene rubber and barium hexaferrite based flexible elastomer–inorganic dielectric systems, Materials Today: Proceedings, vol. 41, pp. 369-375, 2021.

P. Dixit et al., Salt hydrate phase change materials: Current state of art and the road ahead, Journal of Energy Storage, vol. 51, p. 104360, 2022.

DOI: http://dx.doi.org/10.18517/ijaseit.13.1.16858


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development