Increase in Torque and Power of an Otto 200cc Spark Ignition Engine with Modifications in the Combustion Chamber

Vicente Rojas-Reinoso, Johnny Pancha-Ramos, Vicente Romero-Hidalgo, Jorge Martinez-Coral, Ivan Zambrano-Orejuela

Abstract


Study of the behavior of a single-cylinder type spark ignition Otto engine with a cylinder capacity of 200 cubic centimeters, which generates a modification in the geometry of the combustion chamber to increase the compression ratio, reaching optimal operating conditions; in order to optimize torque, power, polluting emissions and something fundamental in the social reality of Ecuador, fuel consumption. Variables are determined to be applied in a generic experimental model under controlled conditions with the application of an analysis protocol based on the use of a probe in conjunction with a piezoelectric sensor for various tests based on the effective mean pressure in different engine load cycles, using an electronic acquisition card controlled with LabVIEW software. In the testing cycle, several conditions are considered as the instantaneous speed of the vehicle with attention to the INEN 960 standard, achieving results of an increase in power of 5.85 kW, torque at 0.78 N.m, decrease in CO emissions by 13%, and HC 6.47%, and with a reduction in fuel consumption of 3.35% compared to initial conditions. These results indicate the importance of the study of effective mean pressure as a parameter of a validated experimentation model. The study projections in the branch of analysis of the indicated and real effective mean pressure allow to generate a better control in the combustion process, showing a real stability model according to the engine's behavior characteristics and work requirements.

Keywords


Torque; power; tractor force; DAQ; average pressure; emissions

Full Text:

PDF

References


D. Akal, S. Öztuna, and M. K. Büyükakın, “A review of hydrogen usage in internal combustion engines (gasoline-Lpg-diesel) from combustion performance aspect,” Int. J. Hydrogen Energy, vol. 45, no. 60, pp. 35257–35268, Dec. 2020, doi: 10.1016/j.ijhydene.2020.02.001.

R. Sener, M. U. Yangaz, and M. Z. Gul, “Effects of injection strategy and combustion chamber modification on a single-cylinder diesel engine,” Fuel, vol. 266, p. 117122, Apr. 2020, doi: 10.1016/j.fuel.2020.117122.

N. X. Khoa and O. Lim, “The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine,” Appl. Energy, vol. 248, pp. 54–63, Aug. 2019, doi: 10.1016/j.apenergy.2019.04.075.

B. Amaziane, M. Jurak, L. Pankratov, and A. Piatnitski, “An existence result for nonisothermal immiscible incompressible 2-phase flow in heterogeneous porous media,” Math. Methods Appl. Sci., vol. 40, no. 18, pp. 7510–7539, Dec. 2017, doi: 10.1002/MMA.4544.

F. Payri and J. M. Desantes, Motores de combustión interna alternativos. Barcelona: Editorial Universitat Politècnica de Valencia, 2011.

M. García López, P. Ponce, L. A. Soriano, A. Molina, and J. J. Rodriguez, “Mejora de la vida útil en los Módulos de Electrónica de Potencia de un BLDCM mediante la Optimización de un Control Difuso,” Rev. Iberoam. automática e informática Ind. ( RIAI ), ISSN-e 1697-7912, Vol. 16, No. 1, 2019, págs. 66-78, vol. 16, no. 1, pp. 66–78, 2019, Accessed: May 08, 2021. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=6723877&info=resumen&idioma=ENG.

P. Leon and C. Piña, “Predicción de emisiones contaminantes de gases de escape a través de la presión media efectiva empleando redes neuronales en motores de encendido provocado,” Universidad Politécnica Salesiana, 2018.

T. P. Barbosa, J. J. Eckert, V. R. Roso, F. J. P. Pujatti, L. A. R. da Silva, and J. C. Horta Gutiérrez, “Fuel saving and lower pollutants emissions using an ethanol-fueled engine in a hydraulic hybrid passengers vehicle,” Energy, vol. 235, Nov. 2021, doi: 10.1016/J.ENERGY.2021.121361.

J. J. Eckert, L. C. D. A. Silva, F. G. Dedini, and F. C. Correa, “Electric Vehicle Powertrain and Fuzzy Control Multi-Objective Optimization, Considering Dual Hybrid Energy Storage Systems,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3773–3782, Apr. 2020, doi: 10.1109/TVT.2020.2973601.

J. Castresana, G. Gabiña, L. Martin, and Z. Uriondo, “Comparative performance and emissions assessments of a single-cylinder diesel engine using artificial neural network and thermodynamic simulation,” Appl. Therm. Eng., vol. 185, p. 116343, Feb. 2021, doi: 10.1016/j.applthermaleng.2020.116343.

J. J. Eckert, F. M. Santiciolli, R. Y. Yamashita, F. C. Corrêa, L. C. A. Silva, and F. G. Dedini, “Fuzzy gear shifting control optimisation to improve vehicle performance, fuel consumption and engine emissions,” IET Control Theory Appl., vol. 13, no. 16, pp. 2658–2669, Nov. 2019, doi: 10.1049/IET-CTA.2018.6272.

C. Fang, X. Meng, Y. Xie, C. Wen, and R. Liu, “An improved technique for measuring piston-assembly friction and comparative analysis with numerical simulations: Under motored condition,” Mech. Syst. Signal Process., vol. 115, pp. 657–676, Jan. 2019, doi: 10.1016/j.ymssp.2018.06.015.

A. García, J. Monsalve-Serrano, S. Martínez-Boggio, V. Rückert Roso, and N. Duarte Souza Alvarenga Santos, “Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles,” Renew. Energy, vol. 150, pp. 58–77, May 2020, doi: 10.1016/J.RENENE.2019.12.102.

N. D. S. A. Santos, C. E. C. Alvarez, V. R. Roso, J. G. C. Baeta, and R. M. Valle, “Lambda load control in spark ignition engines, a new application of prechamber ignition systems,” Energy Convers. Manag., vol. 236, May 2021, doi: 10.1016/J.ENCONMAN.2021.114018.

C. Wen et al., “Online measurement of piston-assembly friction with wireless IMEP method under fired conditions and comparison with numerical analysis,” Meas. J. Int. Meas. Confed., vol. 174, p. 109009, Apr. 2021, doi: 10.1016/j.measurement.2021.109009.

M. T. Muslim, H. Selamat, A. J. Alimin, N. Mohd Rohi, and M. F. Hushim, “A review on retrofit fuel injection technology for small carburetted motorcycle engines towards lower fuel consumption and cleaner exhaust emission,” Renewable and Sustainable Energy Reviews, vol. 35. Elsevier Ltd, pp. 279–284, Jul. 01, 2014, doi: 10.1016/j.rser.2014.04.037.

B. Deng et al., “The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing,” Appl. Energy, vol. 108, pp. 248–260, Aug. 2013, doi: 10.1016/j.apenergy.2013.03.018.

J. W. Gärtner, Y. Feng, A. Kronenburg, and O. T. Stein, “Numerical investigation of spray collapse in GDI with OpenFOAM,” Fluids, vol. 6, no. 3, Mar. 2021, doi: 10.3390/FLUIDS6030104.

R. F. Sawyer, “Reformulated gasoline for automotive emissions reduction,” Symposium (International) on Combustion, vol. 24, no. 1. Elsevier, pp. 1423–1432, Jan. 01, 1992, doi: 10.1016/S0082-0784(06)80166-9.

J. Williams et al., “Effect of Octane Number on the Performance of Euro 5 and Euro 6 Gasoline Passenger Cars,” SAE Tech. Pap., vol. 2017-March, no. March, Mar. 2017, doi: 10.4271/2017-01-0811.

Z. Gao et al., “Deep-learning based in-cylinder pressure modeling and resolution of ion current signals,” Fuel, vol. 282, p. 118722, Dec. 2020, doi: 10.1016/j.fuel.2020.118722.

N. Duarte Souza Alvarenga Santos, V. Rückert Roso, A. C. Teixeira Malaquias, and J. G. Coelho Baêta, “Internal combustion engines and biofuels: Examining why this robust combination should not be ignored for future sustainable transportation,” Renew. Sustain. Energy Rev., vol. 148, Sep. 2021, doi: 10.1016/J.RSER.2021.111292.

S. F. da Silva, J. J. Eckert, F. L. Silva, L. C. A. Silva, and F. G. Dedini, “Multi-objective optimization design and control of plug-in hybrid electric vehicle powertrain for minimization of energy consumption, exhaust emissions and battery degradation,” Energy Convers. Manag., vol. 234, Apr. 2021, doi: 10.1016/J.ENCONMAN.2021.113909.

A. Joshi, “Review of Vehicle Engine Efficiency and Emissions,” SAE Tech. Pap., vol. 2020-April, no. April, Apr. 2020, doi: 10.4271/2020-01-0352.

Z. Guo et al., “Experimental study on combustion and emissions of an SI engine with gasoline port injection and acetone-butanol-ethanol (ABE) direct injection,” Fuel, vol. 284, p. 119037, Jan. 2021, doi: 10.1016/j.fuel.2020.119037.

B. Yan, H. Wang, Z. Zheng, Y. Qin, and M. Yao, “The effect of combustion chamber geometry on in-cylinder flow and combustion process in a stoichiometric operation natural gas engine with EGR,” Appl. Therm. Eng., vol. 129, pp. 199–211, Jan. 2018, doi: 10.1016/j.applthermaleng.2017.09.067.

J. P. Szybist et al., “What fuel properties enable higher thermal efficiency in spark-ignited engines?,” Prog. Energy Combust. Sci., vol. 82, Jan. 2021, doi: 10.1016/J.PECS.2020.100876.

M. Alrbai, M. Robinson, and N. Clark, “Multi Cycle Modeling, Simulating and Controlling of a Free Piston Engine with Electrical Generator under HCCI Combustion Conditions,” Combust. Sci. Technol., vol. 192, no. 10, pp. 1825–1849, Oct. 2020, doi: 10.1080/00102202.2019.1627340.

B. Işcan, “ANN modeling for justification of thermodynamic analysis of experimental applications on combustion parameters of a diesel engine using diesel and safflower biodiesel fuels,” Fuel, vol. 279, p. 118391, Nov. 2020, doi: 10.1016/j.fuel.2020.118391.

R. Di Leo, “Methodologies for air-fuel ratio and trapped mass estimation in diesel engines using the in-cylinder pressure measurement,” in Energy Procedia, Dec. 2015, vol. 82, pp. 957–964, doi: 10.1016/j.egypro.2015.11.850.

V. Rojas, V. Romero, J. Pancha, and J. Martínez, “Analysis of modifications of an internal gasoline combustion engine and determination of torque and power curves applying a mathematical model.,” Rev. Energía y Mecánica Innovación y Futur., vol. 1, no. 7, pp. 85–93, 2018, Accessed: May 08, 2021. [Online]. Available: http://repositorio.espe.edu.ec/jspui/handle/21000/18765.

Z. Zhou et al., “Mapping K factor variations and its causes in a modern, spark-ignition engine,” Fuel, vol. 290, Apr. 2021, doi: 10.1016/J.FUEL.2020.120012.

J. Castillo, V. Rojas, and J. Martínez, “Determination of Torque and Power of a Gasoline Internal Combustion Engine by Using Spark with Pressure Sensor Adapted and Application of a Mathematical Model,” Rev. Politécnica, vol. 39, no. 1, pp. 49–57, 2017, Accessed: May 08, 2021. [Online]. Available: http://scielo.senescyt.gob.ec/scielo.php?script=sci_abstract&pid=S1390-01292017000100049&lng=en&nrm=iso.

M. Tadros, M. Ventura, and C. G. Soares, “Data driven in-cylinder pressure diagram based optimization procedure,” J. Mar. Sci. Eng., vol. 8, no. 4, Apr. 2020, doi: 10.3390/JMSE8040294.

T. Skrzek et al., “Repeatability of high-pressure measurement in a diesel engine test bed,” Sensors (Switzerland), vol. 20, no. 12, pp. 1–12, Jun. 2020, doi: 10.3390/s20123478.

D. Stannard, D. Quinn, C. Hill, and C. Johansen, “Experimental investigation of self-pressurized propellant injection into a simulated rocket motor combustion chamber,” Int. J. Multiph. Flow, vol. 142, Sep. 2021, doi: 10.1016/J.IJMULTIPHASEFLOW.2021.103707.

H. G. Zhang, X. J. Han, B. F. Yao, and G. X. Li, “Study on the effect of engine operation parameters on cyclic combustion variations and correlation coefficient between the pressure-related parameters of a CNG engine,” Appl. Energy, vol. 104, pp. 992–1002, Apr. 2013, doi: 10.1016/j.apenergy.2012.11.043.

B. L. Salvi and K. A. Subramanian, “Experimental investigation and phenomenological model development of flame kernel growth rate in a gasoline fuelled spark ignition engine,” Appl. Energy, vol. 139, pp. 93–103, Feb. 2015, doi: 10.1016/j.apenergy.2014.11.012.

J. Toala and D. Vistín, “Estudio experimental para determinar los parámetros de torque, potencia, consumo y emisiones de un motor de cuatro tiempos, monocilíndrico de 200cc, al variar la geometría de la cámara de combustión.,” 2019.

G. Genta and L. Morello, “Prime Movers For Motor Vehicles,” in The Automotive Chassis, Springer Netherlands, 2009, pp. 165–184.

C. P. O. Treutler, “Magnetic sensors for automotive applications,” Sensors Actuators, A Phys., vol. 91, no. 1–2, pp. 2–6, Jun. 2001, doi: 10.1016/S0924-4247(01)00621-5.

J. M. Riesco-Ávila, A. Gallegos-Muñoz, J. M. Montefort-Sánchez, and S. Martínez-Martínez, “Alternative Combustion Processes in Internal Combustion Engines,” Acta Univ., vol. 15, no. 1, pp. 36–54, Apr. 2005, doi: 10.15174/au.2005.227.

The MathWorks Inc., “Medir el poder de una señal - MATLAB & Simulink - MathWorks América Latina.” https://la.mathworks.com/help/signal/ug/measure-the-power-of-a-signal.html (accessed May 08, 2021).




DOI: http://dx.doi.org/10.18517/ijaseit.12.2.15287

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development