### A Staggered Method for Simulating Shallow Water Flows along Channels with Irregular Geometry and Friction

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

B. de Saint-Venant, â€œThÃ©orie du Mouvement Non Permanent des Eaux, avec Application aux Crues des RiviÃ¨res et Ã lâ€™introduction des MarÃ©es dans leur Lit,â€ Comptes Rendus des SÃ©ances lâ€™AcadÃ©mie des Sci., vol. 73, pp. 147â€“154, 237â€“240, 1871.

J. A. Cunge, F. M. Holly Jr, and A. Verwey, Practical Aspects of Computational River Hydraulics. Boston: Pitman Advanced Publishing Program, 1980.

K. Ostad-Ali-Askari, M. Shayannejad, S. Eslamian, and B. Navabpour, â€œComparison of solutions of Saint-Venant equations by characteristics and finite difference methods for unsteady flow analysis in open channel,â€ Int. J. Hydrol. Sci. Technol., vol. 8, no. 3, pp. 229â€“243, 2018.

G. Natasha, Suharjito, and V. Noviantri, â€œSaint-Venant Model Analysis of Trapezoidal Open Channel Water Flow using Finite Difference Method,â€ Procedia Comput. Sci., vol. 157, pp. 6â€“15, 2019.

J. BalbÃ¡s and S. Karni, â€œA Central Scheme for Shallow Water Flows along Channels with Irregular Geometry,â€ ESAIM Math. Model. Numer. Anal., vol. 38, pp. 821â€“852, 2004.

W. Lai and A. A. Khan, â€œNumerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method,â€ J. Hydrodyn., vol. 30, no. 2, pp. 189â€“202, 2018.

V. Michel-Dansac, C. Berthon, S. Clain, and F. Foucher, â€œA well-balanced scheme for the shallow-water equations with topography or Manning friction,â€ J. Comput. Phys., vol. 335, pp. 115â€“154, 2017.

S. Mungkasi, I. Magdalena, S. R. Pudjaprasetya, L. H. Wiryanto, and S. G. Roberts, â€œA staggered method for the shallow water equations involving varying channel width and topography,â€ Int. J. Multiscale Comput. Eng., vol. 16, no. 3, pp. 231â€“244, 2018.

X. Xia and Q. Liang, â€œA new efficient implicit scheme for discretising the stiff friction terms in the shallow water equations,â€ Adv. Water Resour., vol. 117, no. March, pp. 87â€“97, 2018.

G. S. Stelling and S. P. A. Duinmeijer, â€œA staggered conservative scheme for every Froude number in rapidly varied shallow water flows,â€ Int. J. Numer. Methods Fluids, vol. 43, no. 12, pp. 1329â€“1354, 2003.

R. J. LeVeque, Numerical Methods for Conservation Laws. Basel: BirkhÃ¤user, 1992.

C. Lu, L. Xie, and H. Yang, â€œThe Simple Finite Volume Lax-Wendroff Weighted Essentially Nonoscillatory Schemes for Shallow Water Equations with Bottom Topography,â€ Math. Probl. Eng., vol. 2018, 2018.

A. Kurganov, â€œFinite-volume schemes for shallow-water equations,â€ Acta Numer., vol. 27, pp. 289â€“351, 2018.

A. Kurganov, S. Noelle, and G. Petrova, â€œSemidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamiltonâ€“Jacobi Equations,â€ SIAM J. Sci. Comput., vol. 23, no. 3, pp. 703â€“740, 2001.

S. Mungkasi, â€œA study of well-balanced finite volume methods and refinement indicators for the shallow water equations,â€ Bull. Aust. Math. Soc., vol. 88, no. 2, pp. 351â€“352, 2013.

S. Mungkasi, â€œAdaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids,â€ Adv. Math. Phys., vol. 2016, no. October, 2016.

H. Ai, L. Yao, H. Zhao, and Y. Zhou, â€œShallow-Water-Equation Model for Simulation of Earthquake-Induced Water Waves,â€ Math. Probl. Eng., vol. 2017, pp. 1â€“11, 2017.

B. A. Sulistyono and L. H. Wiryanto, â€œInvestigation of flood routing by a dynamic wave model in trapezoidal channels Investigation of Flood Routing by a Dynamic Wave Model in Trapezoidal Channels,â€ in AIP Conference Proceedings, 2017, vol. 1867, no. August, pp. 0200201â€“8.

B. A. Sulistyono and L. H. Wiryanto, â€œAn Analysis of the Influence of Variability Rainfall on Flow Rate Based on the Watershed Characteristics,â€ in IOP Conference Series: Earth and Environmental Science, 2018, vol. 124, no. 1, pp. 0â€“6.

J. Stoker, Water Waves: The Mathematical Theory with Applications. New York: Interscience Publishers, 1957.

N. Goutal and F. Maurel, â€œProceedings of the 2nd Workshop on Dam-Break Wave Simulation,â€ in Technical Report HE-43/97/016/B, ElectricitÃ© de France, Direction des Ã©tudes et recherches, Paris, 1997.

DOI: http://dx.doi.org/10.18517/ijaseit.10.3.7413

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development