Modelling and PSO Fine-tuned PID Control of Quadrotor UAV

Aminurrashid Noordin, Mohd Ariffanan Mohd Basri, Zaharuddin Mohamed, Amar Faiz Zainal Abidin


This paper describes nonlinear dynamics model of x-configuration quadrotor using Newton-Euler modelling technique. To stabilize quadrotor attitude (roll (ϕ), pitch (θ), yaw (ψ)) during hovering, a PID controller is proposed. There is individual PID controller for each roll, pitch, yaw and z where 12 parameters consist of kp, ki, and kd are fine-tuned using particle swarm optimization algorithms. From the simulation, the sum absolute error fitness function give the best optimize result where quadrotor achieve zero steady state error for hovering with 18.9% overshoot, and 4.42s settling time. Accordingly, for attitude stabilization, roll angle, pitch angle, and yaw angle converge to the set point, zero approximately with settling time 2.76s, 0.1s and 3.2s respectively.


UAV; PID; PSO: quadrotor; Newton-Euler

Full Text:




  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development