### Cost-effective and Low-complexity Non-constrained Workflow Scheduling for Cloud Computing Environment

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

N. Mansouri, R. Ghafari, and B. M. H. Zade, "Cloud computing simulators: A comprehensive review," Simul. Model. Pract. Theory, vol. 104, p. 102144, 2020, doi: 10.1016/j.simpat.2020.102144.

C. Tshimanga, K. Emmanuel, S. Ntumba, B. EugÃ¨ne, and M. Mukendi, "A multi â€‘ criteria decision making heuristic for workflow scheduling in cloud computing environment," J. Supercomput., no. 0123456789, 2022, doi: 10.1007/s11227-022-04677-z.

Y. Liu, A. Soroka, L. Han, J. Jian, and M. Tang, "Cloud-based big data analytics for customer insight-driven design innovation in SMEs," Int. J. Inf. Manage., vol. 51, no. November, pp. 0â€“1, 2020, doi: 10.1016/j.ijinfomgt.2019.11.002.

Y. Gu and C. Budati, "Energy-aware workflow scheduling and optimization in clouds using bat algorithm," Futur. Gener. Comput. Syst., vol. 113, pp. 106â€“112, 2020, doi: 10.1016/j.future.2020.06.031.

S. Azizi, M. Zandsalimi, and D. Li, "An energy-efficient algorithm for virtual machine placement optimization in cloud data centers," Cluster Comput., vol. 23, no. 4, pp. 3421â€“3434, 2020, doi: 10.1007/s10586-020-03096-0.

L. Kong, J. Pepe, B. Mapetu, and Z. Chen, "Heuristic Load Balancing Based Zero Imbalance Mechanism in Cloud Computing," J. Grid Comput., vol. 18, no 1, pp. 123â€“148, 2019, [Online]. Available: //doi.org/10.1007/s10723-019-09486-y

A. Pujiyanta and L. Edi, "Job Scheduling Strategies in Grid Computing," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 3, pp. 1293â€“1300, 2022.

P. Paknejad, R. Khorsand, and M. Ramezanpour, "Chaotic improved PICEA-g-based multi-objective optimization for workflow scheduling in cloud environment," Futur. Gener. Comput. Syst., vol. 117, pp. 12â€“28, 2021, doi: 10.1016/j.future.2020.11.002.

"CloudSigma. Accessed on: , [Online]. Available: https://www.cloudsigma.com/us/."

H. R. Faragardi, M. R. Saleh Sedghpour, S. Fazliahmadi, T. Fahringer, and N. Rasouli, "GRP-HEFT: A Budget-Constrained Resource Provisioning Scheme for Workflow Scheduling in IaaS Clouds," IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 6, pp. 1239â€“1254, 2020, doi: 10.1109/TPDS.2019.2961098.

V. Kelefouras and K. Djemame, "Workflow simulation and multi-threading aware task scheduling for heterogeneous computing," J. Parallel Distrib. Comput., vol. 168, pp. 17â€“32, 2022, doi: 10.1016/j.jpdc.2022.05.011.

S. Saeedi, R. Khorsand, S. Ghandi Bidgoli, and M. Ramezanpour, "Improved many-objective particle swarm optimization algorithm for scientific workflow scheduling in cloud computing," Comput. Ind. Eng., vol. 147, p. 106649, 2020, doi: 10.1016/j.cie.2020.106649.

J. Zhou, T. Wang, P. Cong, P. Lu, T. Wei, and M. Chen, "Cost and makespan-aware workflow scheduling in hybrid clouds," J. Syst. Archit., vol. 100, 2019, doi: 10.1016/j.sysarc.2019.08.004.

F. Jauro, H. Chiroma, A. Y. Gital, M. Almutairi, S. M. Abdulhamid, and J. H. Abawajy, "Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend," Appl. Soft Comput. J., vol. 96, p. 106582, 2020, doi: 10.1016/j.asoc.2020.106582.

B. Liang, X. Dong, Y. Wang, and X. Zhang, "A low-power task scheduling algorithm for heterogeneous cloud computing," J. Supercomput., vol. 76, no. 9, pp. 7290â€“7314, 2020, doi: 10.1007/s11227-020-03163-8.

E. Bugingo, D. Zhang, Z. Chen, and W. Zheng, "Towards decomposition based multi-objective workflow scheduling for big data processing in clouds," Cluster Comput., vol. 24, no. 1, pp. 115â€“139, 2021, doi: 10.1007/s10586-020-03208-w.

X. Guo, "Multi-objective task scheduling optimization in cloud computing based on fuzzy self-defense algorithm," Alexandria Eng. J., vol. 60, no. 6, pp. 5603â€“5609, 2021, doi: 10.1016/j.aej.2021.04.051.

J. E. Ndamlabin Mboula, V. C. Kamla, and C. Tayou Djamegni, "Cost-time trade-off efficient workflow scheduling in cloud," Simul. Model. Pract. Theory, vol. 103, no. October 2019, p. 102107, 2020, doi: 10.1016/j.simpat.2020.102107.

Y. Hao, J. Cao, Q. Wang, and J. Du, "Energy-aware scheduling in edge computing with a clustering method," Futur. Gener. Comput. Syst., vol. 117, pp. 259â€“272, 2021, doi: 10.1016/j.future.2020.11.029.

A. Mohammadzadeh, M. Masdari, and F. S. Gharehchopogh, Energy and Cost-Aware Workflow Scheduling in Cloud Computing Data Centers Using a Multi-objective Optimization Algorithm, vol. 29, no. 3. Springer US, 2021. doi: 10.1007/s10922-021-09599-4.

K. Mishra and S. K. Majhi, "A binary Bird Swarm Optimization based load balancing algorithm for cloud computing environment," Open Comput. Sci., vol. 11, no. 1, pp. 146â€“160, 2021, doi: 10.1515/comp-2020-0215.

M. Sardaraz and M. Tahir, "A parallel multi-objective genetic algorithm for scheduling scientific workflows in cloud computing," Int. J. Distrib. Sens. Networks, vol. 16, no. 8, 2020, doi: 10.1177/1550147720949142.

C. G. Ralha, A. H. D. Mendes, L. A. Laranjeira, A. P. F. AraÃºjo, and A. C. M. A. Melo, "Multiagent system for dynamic resource provisioning in cloud computing platforms," Futur. Gener. Comput. Syst., vol. 94, pp. 80â€“96, 2019, doi: 10.1016/j.future.2018.09.050.

A. Asghari and M. K. Sohrabi, "Combined use of coral reefs optimization and multi-agent deep Q-network for energy-aware resource provisioning in cloud data centers using DVFS technique," Cluster Comput., vol. 25, no. 1, pp. 119â€“140, 2022, doi: 10.1007/s10586-021-03368-3.

P. S. Rawat, P. Dimri, P. Gupta, and G. P. Saroha, "Resource provisioning in scalable cloud using bio-inspired artificial neural network model," Appl. Soft Comput., vol. 99, p. 106876, 2021, doi: 10.1016/j.asoc.2020.106876.

X. Zhou, G. Zhang, J. Sun, J. Zhou, T. Wei, and S. Hu, "Minimizing cost and makespan for workflow scheduling in cloud using fuzzy dominance sort based HEFT," Futur. Gener. Comput. Syst., vol. 93, pp. 278â€“289, 2019, doi: 10.1016/j.future.2018.10.046.

T. A. L. Genez, I. Pietri, R. Sakellariou, L. F. Bittencourt, and E. R. M. Madeira, "A Particle Swarm Optimization Approach for Workflow Scheduling on Cloud Resources Priced by CPU Frequency," Proc. - 2015 IEEE/ACM 8th Int. Conf. Util. Cloud Comput. UCC 2015, pp. 237â€“241, 2015, doi: 10.1109/UCC.2015.40.

W. Ahmad, B. Alam, S. Ahuja, and S. Malik, "A dynamic VM provisioning and de-provisioning based cost-efficient deadline-aware scheduling algorithm for Big Data workflow applications in a cloud environment," Cluster Comput., vol. 24, no. 1, pp. 249â€“278, 2021, doi: 10.1007/s10586-020-03100-7.

N. Rizvi and D. Ramesh, "Fair budget constrained workflow scheduling approach for heterogeneous clouds," Cluster Comput., vol. 23, no. 4, pp. 3185â€“3201, 2020, doi: 10.1007/s10586-020-03079-1.

T. A. L. Genez, L. F. Bittencourt, and E. R. M. Madeira, "Time-discretization for speeding-up scheduling of deadline-constrained workflows in clouds," Futur. Gener. Comput. Syst., vol. 107, pp. 1116â€“1129, 2020, doi: 10.1016/j.future.2017.07.061.

N. Rizvi and D. Ramesh, "HBDCWS: heuristic-based budget and deadline constrained workflow scheduling approach for heterogeneous clouds," Soft Comput., vol. 24, no. 24, pp. 18971â€“18990, 2020, doi: 10.1007/s00500-020-05127-9.

E. B. Edwin, P. Umamaheswari, and M. R. Thanka, "An efficient and improved multi-objective optimized replication management with dynamic and cost aware strategies in cloud computing data center," Cluster Comput., vol. 22, no. s5, pp. 11119â€“11128, 2019, doi: 10.1007/s10586-017-1313-6.

K. Kalyan Chakravarthi, L. Shyamala, and V. Vaidehi, "Budget aware scheduling algorithm for workflow applications in IaaS clouds," Cluster Comput., vol. 23, no. 4, pp. 3405â€“3419, 2020, doi: 10.1007/s10586-020-03095-1.

I. Pietri and R. Sakellariou, "Cost-efficient CPU provisioning for scientific workflows on clouds," Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9512, pp. 49â€“64, 2016, doi: 10.1007/978-3-319-43177-2_4.

E. Saeedizade and M. Ashtiani, DDBWS: a dynamic deadline and budget-aware workflow scheduling algorithm in workflow-as-a-service environments, vol. 77, no. 12. Springer US, 2021. doi: 10.1007/s11227-021-03858-6.

N. Zhou, W. Lin, W. Feng, F. Shi, and X. Pang, "Budget-deadline constrained approach for scientific workflows scheduling in a cloud environment," Cluster Comput., vol. 1, 2020, doi: 10.1007/s10586-020-03176-1.

Y. Wen, J. Liu, W. Dou, X. Xu, B. Cao, and J. Chen, "Scheduling workflows with privacy protection constraints for big data applications on cloud," Futur. Gener. Comput. Syst., vol. 108, pp. 1084â€“1091, 2020, doi: 10.1016/j.future.2018.03.028.

S. Yassa, R. Chelouah, H. Kadima, and B. Granado, "Multi-objective approach for energy-aware workflow scheduling in cloud computing environments," Sci. World J., vol. 2013, 2013, doi: 10.1155/2013/350934.

G. Khojasteh Toussi and M. Naghibzadeh, "A divide and conquer approach to deadline constrained cost-optimization workflow scheduling for the cloud," Cluster Comput., vol. 24, no. 3, pp. 1711â€“1733, 2021, doi: 10.1007/s10586-020-03223-x.

Y. Pan et al., "A Novel Approach to Scheduling Workflows Upon Cloud Resources with Fluctuating Performance," Mob. Networks Appl., vol. 25, no. 2, pp. 690â€“700, 2020, doi: 10.1007/s11036-019-01450-0.

R. Valarmathi and T. Sheela, "Ranging and tuning based particle swarm optimization with bat algorithm for task scheduling in cloud computing," Cluster Comput., vol. 22, no. s5, pp. 11975â€“11988, 2019, doi: 10.1007/s10586-017-1534-8.

P. Lu, G. Zhang, Z. Zhu, X. Zhou, J. Sun, and J. Zhou, "A review of cost and makespan-Aware workflow scheduling in clouds," J. Circuits, Syst. Comput., vol. 28, no. 6, 2019, doi: 10.1142/S021812661930006X.

W. Zheng, Y. Qin, E. Bugingo, D. Zhang, and J. Chen, "Cost optimization for deadline-aware scheduling of big-data processing jobs on clouds," Futur. Gener. Comput. Syst., vol. 82, pp. 244â€“255, 2018, doi: 10.1016/j.future.2017.12.004.

H. Topcuoglu, S. Hariri, and M. Y. Wu, "Performance-effective and low-complexity task scheduling for heterogeneous computing," IEEE Trans. Parallel Distrib. Syst., vol. 13, no. 3, pp. 260â€“274, 2002, doi: 10.1109/71.993206.

B. Emmanuel, Y. Qin, J. Wang, D. Zhang, and W. Zheng, "Cost optimization heuristics for deadline constrained workflow scheduling on clouds and their comparative evaluation," Concurr. Comput. Pract. Exp., vol. 30, no. 20, pp. 1â€“14, 2018, doi: 10.1002/cpe.4762.

"Workflow Galler. Accessed on: April 20, 2021, [Online]. Available: https://confluence.pegasus.isi.edu/display/pegasus/."

DOI: http://dx.doi.org/10.18517/ijaseit.13.1.17752

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development