### 2D Numerical Model of Sediment Transport Under Dam-break Flow Using Finite Element

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

H. Qian, Z. Cao, H. Liu, and G. Pender, â€œNew experimental dataset for partial dam-break floods over mobile beds,â€ J. Hydraul. Res., vol. 56, no. 1, pp. 124â€“135, 2018, doi: 10.1080/00221686.2017.1289264.

V. Hatje et al., â€œThe environmental impacts of one of the largest tailing dam failures worldwide,â€ Sci. Rep., vol. 7, no. 1, pp. 1â€“13, 2017, doi: 10.1038/s41598-017-11143-x.

F. F. do Carmo et al., â€œFundÃ£o tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context,â€ Perspect. Ecol. Conserv., vol. 15, no. 3, pp. 145â€“151, 2017, doi: 10.1016/j.pecon.2017.06.002.

L. H. Silva Rotta et al., â€œThe 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil,â€ Int. J. Appl. Earth Obs. Geoinf., vol. 90, no. January, p. 102119, 2020, doi: 10.1016/j.jag.2020.102119.

V. E. Glotov, J. Chlachula, L. P. Glotova, and E. Little, â€œCauses and environmental impact of the gold-tailings dam failure at Karamken, the Russian Far East,â€ Eng. Geol., vol. 245, pp. 236â€“247, 2018, doi: 10.1016/j.enggeo.2018.08.012.

C. dos Santos Vergilio et al., â€œImmediate and long-term impacts of one of the worst mining tailing dam failure worldwide (Bento Rodrigues, Minas Gerais, Brazil),â€ Sci. Total Environ., vol. 756, p. 143697, 2021, doi: 10.1016/j.scitotenv.2020.143697.

K. T. O. Coimbra, E. AlcÃ¢ntara, and C. R. de Souza Filho, â€œAn assessment of natural and manmade hazard effects on the underwater light field of the Doce River continental shelf,â€ Sci. Total Environ., vol. 685, pp. 1087â€“1096, 2019, doi: 10.1016/j.scitotenv.2019.06.127.

B. Spinewine and Y. Zech, â€œSmall-scale laboratory dam-break waves on movable beds,â€ J. Hydraul. Res., vol. 45, no. SPEC. ISS., pp. 73â€“86, 2007, doi: 10.1080/00221686.2007.9521834.

X. Li, G. Li, and Y. Ge, â€œA new fifth-order finite differencewenoscheme for dam-break simulations,â€ Adv. Appl. Math. Mech., vol. 13, no. 1, pp. 58â€“82, 2020, doi: 10.4208/AAMM.OA-2019-0155.

P. W. Li and C. M. Fan, â€œGeneralized finite difference method for two-dimensional shallow water equations,â€ Eng. Anal. Bound. Elem., vol. 80, pp. 58â€“71, 2017, doi: 10.1016/j.enganabound.2017.03.012.

Z. Wang, J. Zhu, and N. Zhao, â€œA new fifth-order finite difference well-balanced multi-resolution WENO scheme for solving shallow water,â€ Comput. Math. with Appl., vol. 80, no. 5, pp. 1380â€“1387, 2020, doi: 10.1016/j.camwa.2020.07.003.

H. M. Kalita, â€œA simple and efficient numerical model for simulating one dimensional dam break flows,â€ Int. J. Hydrol. Sci. Technol., vol. 10, no. 1, pp. 1â€“16, 2020, doi: 10.1504/IJHST.2020.104985.

H. Lee, â€œImplicit discontinuous Galerkin scheme for shallow water equations,â€ J. Mech. Sci. Technol., vol. 33, no. 7, pp. 3301â€“3310, 2019, doi: 10.1007/s12206-019-0625-2.

O. Seyedashraf and A. A. Akhtari, â€œTwo-dimensional numerical modeling of dam-break flow using a new TVD finite-element scheme,â€ J. Brazilian Soc. Mech. Sci. Eng., vol. 39, no. 11, pp. 4393â€“4401, 2017, doi: 10.1007/s40430-017-0776-y.

D. Harlan, M. B. Adityawan, D. K. Natakusumah, and N. L. H. Zendrato, â€œApplication of numerical filter to a Taylor Galerkin finite element model for movable bed dam break flows,â€ Int. J. GEOMATE, vol. 16, no. 57, pp. 209â€“216, 2019, doi: 10.21660/2019.57.70809.

G. Li, L. Song, and J. Gao, â€œHigh order well-balanced discontinuous Galerkin methods based on hydrostatic reconstruction for shallow water equations,â€ J. Comput. Appl. Math., vol. 340, pp. 546â€“560, 2018, doi: 10.1016/j.cam.2017.10.027.

O. Castro-Orgaz and H. Chanson, â€œRitterâ€™s dry-bed dam-break flows: positive and negative wave dynamics,â€ Environ. Fluid Mech., vol. 17, no. 4, pp. 665â€“694, 2017, doi: 10.1007/s10652-017-9512-5.

J. FernÃ¡ndez-Pato, M. Morales-HernÃ¡ndez, and P. GarcÃa-Navarro, â€œImplicit finite volume simulation of 2D shallow water flows in flexible meshes,â€ Comput. Methods Appl. Mech. Eng., vol. 328, pp. 1â€“25, 2018, doi: 10.1016/j.cma.2017.08.050.

C. Di Cristo, M. Greco, M. Iervolino, R. Martino, and A. Vacca, â€œA remark on finite volume methods for 2D shallow water equations over irregular bottom topography,â€ J. Hydraul. Res., vol. 59, no. 2, pp. 337â€“344, 2020, doi: 10.1080/00221686.2020.1744752.

I. Kissami, M. Seaid, and F. Benkhaldoun, â€œNumerical assessment of criteria for mesh adaptation in the finite volume solution of shallow water equations,â€ Adv. Appl. Math. Mech., vol. 12, no. 2, pp. 503â€“526, 2020, doi: 10.4208/AAMM.OA-2019-0011.

Y. Lakhlifi, S. Daoudi, and F. Boushaba, â€œDam-Break computations by a dynamical adaptive finite volume method,â€ J. Appl. Fluid Mech., vol. 11, no. 6, pp. 1543â€“1556, 2018, doi: 10.29252/jafm.11.06.28564.

N. Lely Hardianti Zendrato, D. Harlan, M. Bagus Adityawan, and D. Kardana Natakusumah, â€œ1D Numerical modelling of dam break using finite element method,â€ MATEC Web Conf., vol. 270, p. 04022, 2019, doi: 10.1051/matecconf/201927004022.

R. Meurice and S. Soares-FrazÃ£o, â€œA 2D HLL-based weakly coupled model for transient flows on mobile beds,â€ J. Hydroinformatics, vol. 22, no. 5, pp. 1351â€“1369, 2020, doi: 10.2166/hydro.2020.033.

A. Hosseinzadeh-Tabrizi and M. Ghaeini-Hessaroeyeh, â€œModelling of dam failure-induced flows over movable beds considering turbulence effects,â€ Comput. Fluids, vol. 161, pp. 199â€“210, 2018, doi: 10.1016/j.compfluid.2017.11.008.

I. Magdalena, M. B. Adityawan, and C. Jonathan, â€œNumerical model for dam break over a movable bed using finite volume method,â€ Int. J. GEOMATE, vol. 19, no. 71, pp. 98â€“105, 2020, doi: 10.21660/2020.71.27074.

J. Donea, â€œA Taylorâ€“Galerkin method for convective transport problems,â€ Int. J. Numer. Methods Eng., vol. 20, no. 1, pp. 101â€“119, 1984, doi: 10.1002/nme.1620200108.

C. B. Jiang, M. Kawahara, and K. Kashiyama, â€œA Taylor-Galerkin-based finite element method for turbulent flows,â€ Fluid Dyn. Res., vol. 9, no. 4, pp. 165â€“178, 1992, doi: 10.1016/0169-5983(92)90003-F.

Q. Hafiyyan, M. B. Adityawan, D. Harlan, D. K. Natakusumah, and I. Magdalena, â€œComparison of Taylor Galerkin and FTCS models for dam-break simulation,â€ IOP Conf. Ser. Earth Environ. Sci., vol. 737, no. 1, 2021, doi: 10.1088/1755-1315/737/1/012050.

M. B. Adityawan and H. Tanaka, â€œBed stress assessment under solitary wave run-up,â€ Earth, Planets Sp., vol. 64, no. 10, pp. 945â€“954, 2012, doi: 10.5047/eps.2011.02.012.

Q. Hafiyyan, â€œTwo Dimensional Modelling of Dam-break Flow Over Movable Bed Using Taylor Galerkin Finite Element Method,â€ Bandung Institute of Technology (ITB), Bandung, 2020.

B. Spinewine and H. Capart, â€œIntense bed-load due to a sudden dam-break,â€ J. Fluid Mech., vol. 731, pp. 579â€“614, 2013, doi: 10.1017/jfm.2013.227.

M. Iervolino, A. Leopardi, S. Soares-FrazÃ£o, C. Swartenbroekx, and Y. Zech, â€œ2D-H Numerical Simulation of Dam-Break Flow on Mobile Bed with Sudden Enlargement,â€ River Flow 2010, 2010.

DOI: http://dx.doi.org/10.18517/ijaseit.11.6.14484

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development