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Abstract— There are enormous advantages of a review article in the field of emerging technology like radar remote sensing 
applications in agriculture. This paper aims to report select recent advancements in the field of Synthetic Aperture Radar (SAR) 
remote sensing of crops. In order to make the paper comprehensive and more meaningful for the readers, an attempt has also been 
made to include discussion on various technologies of SAR sensors used for remote sensing of agricultural crops viz. basic SAR 
sensor, SAR interferometry (InSAR), SAR polarimetry (PolSAR) and polarimetric interferometry SAR (PolInSAR). The paper 
covers all the methodologies used for various agricultural applications like empirically based models, machine learning based models 
and radiative transfer theorem based models. A thorough literature review of more than 100 research papers indicates that SAR 
polarimetry can be used effectively for crop inventory and biophysical parameters estimation such are leaf area index, plant water 
content, and biomass but shown less sensitivity towards plant height as compared to SAR interferometry. Polarimetric SAR 
Interferometry is preferable for taking advantage of both SAR polarimetry and SAR interferometry. Numerous studies based upon 
multi-parametric SAR indicate that optimum selection of SAR sensor parameters enhances SAR sensitivity as a whole for various 
agricultural applications. It has been observed that researchers are widely using three models such are empirical, machine learning 
and radiative transfer theorem based models. Machine learning based models are identified as a better approach for crop monitoring 
using radar remote sensing data. It is expected that the review article will not only generate interest amongst the readers to explore 
and exploit radar remote sensing for various agricultural applications but also provide a ready reference to the researchers working 
in this field. 
 
Keywords— biophysical parameters retrieval; crop inventory; synthetic aperture radar (SAR); synthetic aperture radar 
interferometry (InSAR); SAR polarimetry (PolSAR); polarimetric SAR interferometry (PolInSAR). 
 
 

I. INTRODUCTION 

An accurate estimation of crop yield is becoming crucial 
in developing countries to improve food security. The 
demand for grain is going to be nearly double of the current 
situation by 2050 [1]. Yield forecasting in regional and 
national level helps to maintain political and social stability 
and equity [2]. Crop yield primarily depends on the crop 
biophysical parameters dynamics over a period during the 
growing season [3]-[4]. Therefore, the spatiotemporal 
changes of crop biophysical parameters are required for 
precise yield forecasting. 

In contrast to ground-based instrument measurements, 
remote sensing data has gained considerable importance for 

crop biophysical parameters retrieval by providing high 
spatial and temporal resolution images from local to global 
scales. Moreover, remote sensing data can support 
quantitative analyses on land-atmosphere interactions and 
climate models [5]. The all-weather capability of radar 
remote sensing makes it more suitable than all other remote 
sensing techniques for constant crops monitoring. For an 
illustration, the RADARSAT-2 temporal SAR images 
acquired over north India during Kharif season and its 
corresponding optical images are given in Figure 1. The use 
of SAR data for agricultural crop studies has been 
significantly increased after the launch of the first 
operational SAR sensor onboard ERS-1 in 1991. A list of 
few important SAR sensors, which were launched so far is 
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given in Table 1. Several researchers have been investigated 
the sensitivity of the radar return signal towards agricultural 
crop characteristics [6]-[8]. Various SAR technologies like 
SAR polarimetry [9], SAR interferometry[10] and 
polarimetric SAR interferometry[11] have been developed to 

analyze the target characteristics from return signal 
properties. 

 
 
 

 
Fig. 1: Optical and Microwave remote sensing data acquired over northern India 

 
The radar remote sensing has attained importance in 

various applications including agriculture [12]-[13], wetland 
[14]-[16] and forest [17]-[19] related studies due to its 
unique sensitivity to the physical, dielectric and geometric 
properties of various components of vegetation cover and 
underneath soil characteristics. It is widely comprehended 
that the radar return signal from an agricultural crop covered 
field is an effect of target parameters such are vegetation 
cover characteristics and underneath soil moisture [20]-[22] 
as well as sensor parameters such are the frequency of 
operation, incidence angle and polarization [23]-[24]. So, an 
appropriately chosen of SAR sensor parameters is required 
to enhance the sensitivity of SAR data to a particular 
application. Ground-truth sampling for biophysical 
parameters retrieval experiment using SAR data must be 
taken from sufficient large area fields. Patel and 
Srivastava[25], have made a detailed explanation of the 
approach to choose optimum field size and sample size for 
target parameters retrieval. Authors find it necessary to give 
a brief introduction on the interaction of radar signals with 
agricultural crop covered fields so that readers can easily 
understand the required combination of SAR sensor 
parameters and SAR technique for a specified application. 
With the continuation of this, the basics of SAR technologies 
viz. backscattering coefficients, SAR polarimetry, SAR 
interferometry and polarimetric SAR interferometry and the 
renowned research work in crop biophysical parameters 
retrieval are summarized. 

A. Influence of SAR Sensor Parameters on Interaction of 
Microwave Signals with Agriculture Target 

A brief knowledge of SAR sensor parameters influence 
on the interaction of microwave signals with various 
components of the crop is necessary to properly utilize radar 
remote sensing data for a specified application [26]-[27]. For 
this, a detailed discussion of the sensor parameters, such as 
frequency, incidence angle and polarization, and its 
influence on the microwave signal interaction is made in the 
following. 

1)  Frequency:  The ability of the signal to penetrate through 
the crop cover and soil over agricultural fields depends on 
the frequency of operation. The relationship between 
microwave signal penetration depth and frequency of 
operation is given in Equation 1. Commonly using 
microwave frequencies for remote sensing applications and 
its corresponding frequency and wavelength range are given 
in Table 2. The shorter frequencies can penetrate more than 
the more extended microwave frequency signals through the 
crop cover. The shorter frequency (L-band, 1-2 GHz) can 
penetrate through the canopy and interact with the stem and 
underneath soil, while C-band (4-8 GHz) frequency signals 
interact more with the canopy and the longer frequency X-
band (8-12 GHz) interacts mainly with the top of the canopy 
[28]-[29]. Shorter microwave frequencies such are P and L-
bands can even penetrate some extent to the underneath soil. 
The multi-frequency SAR data can use to study the soil 
moisture at various depths over bare fields [30]. 
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TABLE I 
FEW IMPORTANT SAR SENSORS: PAST AND PRESENT 

Satellite Launched 
(Year) 

Sensor Band Polarization/s Platform Remark 

Seasat 1978 SAR L HH Spaceborne Seasat was the first spaceborne satellite for 
remote sensing of the Earth's oceans and had 

on board synthetic aperture radar (SAR). 
DLR 1988 E-SAR X, C, L 

and P 
Quad Airborne - 

ERS-1 1991 AMI C VV Spaceborne The first operational spaceborne SAR sensor. 

JERS-1 1992 SAR L HH Spaceborne 
The first spaceborne SAR sensor which 

operates in L-band. 

SIR-C/ X 1994 SAR 
X, C and 

L 
Quad 

Space 
Shuttle 

- 

ERS-2 1995 AMI C VV Spaceborne 

In combination to ERS-1, ERS-2 provides 
images in TanDEM mode which is supposed 

to be one of the best options for SAR 
interferometry. 

RADARSAT-1 1995 SAR C HH Spaceborne 
The first spaceborne SAR sensor which 

allows acquiring images in multi-incidence 
mode. 

NASA DC-8 
Aircraft 

1998 AIRSAR 
P, L, and 

C 
Quad Airborne 

This is for demonstrating new radar 
technology and acquiring data for the 

development of radar processing techniques 
and applications. 

ENVISAT 2002 ASAR C 

Alternative 
Polarization 
(HH/VV, 
HH/HV, 
VV/VH) 

Spaceborne 
The first spaceborne SAR sensor which 

allows acquiring in multi-incidence and multi-
polarized modes. 

DLR 2006 F-SAR 
X, C, S, L 

and P 
Quad Airborne - 

ALOS 2006 PALSAR L Quad Spaceborne - 

TerraSAR-X 2007 SAR X HH Spaceborne 
Dual - depending on imaging mode quadruple 
is available as advanced polarisation mode for 

dedicated acquisition campaigns 
NASA 

Gulfstream III 
aircraft (C-
20A/G-III) 

2007 UAVSAR L Quad Airborne 

This instrument was designed primarily to 
accurately map crustal deformations 

associated with natural hazards, such as 
volcanoes and earthquakes. 

RADARSAT-2 2007 SAR C Quad Spaceborne - 

TanDEM-X 2010 SAR X Quad Spaceborne 
TerraSAR-X and TanDEM-X will allow the 
generation of WorldDEM, the global digital 

elevation models (DEMs). 

JSC G-III 2012 AirMOSS P Quad Airborne 
NASA's AirMOSS radar measures root-zone 
soil moisture which helps to study the overall 

carbon exchange 

RISAT-1 2012 SAR C 
Dual, Quad & 

Hybrid 
Spaceborne 

The world’s first spaceborne satellite onboard 
hybrid polarimetric SAR architecture. 

ALOS-2 2014 PALSAR-2 L Quad Spaceborne - 

Sentinel-1A 2014 SAR C Quad Spaceborne 

Sentinel-1 was launched to provide continuity 
of data from ERS and Envisat missions, with 

further enhancements regarding revisit, 
coverage, timeliness, and reliability of service. 

Sentinel-1B 2016 SAR C Quad Spaceborne - 
 

                    (1) 

Where: C = 3⨯10^8 m/s; ε’ = Real part of dielectric 
constant; f = SAR sensor frequency of operation and ε” = 
Imaginary part of dielectric constant. 

 
 

TABLE II 
MICROWAVE FREQUENCY BANDS 

S.No. Band Frequency 
(GHz) 

Wavelength 
(cm) 

1 P 0.23-1 3-130 
2 L 1-2 15-30 
3 S 2-4 7.5-15 
4 C 4-8 3.75-7.5 
5 X 8-12.5 2.4-3.75 
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2)  Incidence angle:  The incidence angle of the SAR sensor 
has a considerable influence on the microwave signal 
interaction with the agricultural target. At low incidence 
angle, microwave signals can interact with the underneath 
soil by passing through the gaps between plants. Whereas at 
the high incidence angle, the return signal is highly 
influenced by the crop cover than the underneath soil 
characteristics due to increase in signal propagation length 
through crop cover (as shown in Fig. 2). Several 
experimental results have been concluded that low incidence 
SAR data is more sensitive to the underneath soil moisture 

[30]-[31] and high incidence angle data is more sensitive to 
the crop characteristics [32]-[33]. Very high incidence angle 
SAR data is not suitable for crop biophysical parameters 
retrieval due to the possibility of early saturation. Using a 
single date, single incidence angle SAR data has a limitation 
in resolving the contribution of a specific target parameter in 
the backscattering coefficient due to the effect of several 
target parameters [34]. Thus, investigators evaluating the 
potential of multi-incidence angle SAR data for qualitative 
and quantitative studies of agriculture target. 

 

 
Fig. 2: Microwave signal interaction with agriculture target at various incidence angles 

 

3)  Polarization:  The transmitting signal and receiving 
signal polarizations plays a vital role in enhancing the 
sensitivity of the return signal for a specific application. The 
two linear orthogonal polarized signals, commonly using 
horizontal and vertical, can analyze the arbitrarily polarized 
return signal from the target [35]. It has been observed that 
the cross-polarized data (HV & VH) is more sensitive to 
crop characteristics than the co-polarized data (HH & VV) 
[36]. Although researchers around the world have been 
successfully utilized the SAR data acquired by transmitting 
linear polarized signal for several crop studies, it has few 
limitations like large power requirement, Faraday rotation 

effect, and availability of data over restricted swaths [37]-
[38]. Hybrid-polarity SAR architecture, which involves 
transmitting circular and receives coherent orthogonal linear 
polarizations, designed to resolve the issues in linear-polarity 
[39]. After the launch of RISAT-1 with onboard hybrid-
polarity SAR architecture in 2012, intensive research has 
been carrying to evaluate the potentials of hybrid 
polarimetric SAR data for various remote sensing 
applications [40]. A schematic diagram of linear horizontal, 
linear vertical, right circular and left circularly polarized 
signals are given in the Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Schematic diagram of linear horizontal, linear vertical, right circular and left circularly polarized signals [Source: arnoldsat.com] 
 

II. MATERIALS AND METHODS 

SAR techniques such as backscattering coefficient, SAR 
polarimetry, SAR interferometry and polarimetric SAR 

interferometry, have been developed to retrieve the target 
information from SAR data. Each technique has its 
advantages and limitations in agricultural crop studies. The 
basic principles of each technique are given in the following 
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for better understanding the purpose of selection of a 
technique for specific application. 

 

A. Backscattering coefficient 

The backscatter value represents the intensity of the 
returned signal from the target, which depends on the target 
characteristics. For any SAR data-based analysis, the raw 
SAR data which is in digital number (DN) form has to 
convert into backscattering coefficients, this process called it 
as radiometric calibration. The main advantage of doing this 
process is the methodologies developed over calibrated SAR 
data acquired from one sensor can easily apply over 
calibrated SAR data acquired from another sensor [41]-[42]. 
From the first operational spaceborne SAR sensor onboard 
ERS-1 to the recently launched Sentinel-1 including RISAT-
1, researchers had done an extensive research to develop 
methodologies for SAR sensor calibration [43]-[45]. Several 
studies had successfully carried over backscatter signatures 
extracted from SAR data to retrieve agricultural crop 
biophysical parameters and crop monitoring applications 
[46]-[47]. Although an increasing trend of backscattering 
coefficient with crop growth has been observed from 
ground-based scatterometer and airborne SAR data, Space-
borne SAR data has shown an increasing trend in most of the 
cases along with decreasing trend in some cases. Srivastava 
et al., [48] observed the decreasing trend of RH and RV 
backscatter acquired in the FRS-1 mode of RISAT-1 with 
wheat crop growth. The cause of this uncertainty in the 
space-borne SAR backscatter trend with crop growth needs 
extensive research. 

B. SAR Polarimetry 

The radar return signal polarization from an agricultural 
target depends on the crop properties like moisture, density, 
canopy structure, etc. and underneath soil moisture. In linear 
SAR polarimetry, all four possible linear polarization 
combinations (viz. HH, HV, VH, and VV) with magnitude 
and phase information of return signal used to capture, 
which gives more information than single and dual polarized 
SAR data. Several decomposition techniques were 
developed to estimate the scattering mechanisms (even 
bounce, odd bounce and volume component) based on the 
covariance and coherence matrices derived from 
polarimetric SAR data. The coherent decomposition is only 
useful to study the pure targets and cannot apply for natural 
targets. The incoherent decomposition is more precise to 
study the agricultural targets, and its proportion of scattering 
mechanisms gives the information about the canopy 
structure, orientation, and moisture of the plants [49]. 
Yamaguchi et al., [50] have proposed a methodology to 
retrieve the scattering mechanisms including helix scattering 
to the basic scattering mechanisms, which observes only 
from the built-up areas. Despite the advantages of linear 
polarimetry for agricultural applications, it has few 
limitations. The recent advancements of SAR polarimetry 
are compact polarimetry, in which the transmitted signal 
polarization is a function of linear horizontal and vertical 
polarizations. Compact polarimetry has been used for several 
remote sensing applications and observed its potentials to 
some extent of full polarimetry. The three common modes of 

the compact polarimetry are π/4 mode [51] (transmits ±45˚ 
linear polarization and receives H & V), hybrid or π/2 mode 
[39] (transmits circular polarization and receives H & V) and 
CC mode [52] (transmits circular polarization and receives 
left and right circular polarization). Raney et al., [39, 53] 
proposed m-δ and m-χ space decomposition techniques to 
retrieve basic scattering mechanisms from hybrid 
polarimetric SAR data. Numerous researchers have adopted 
the radiative transfer theorems using scattering 
decompositions to retrieve biophysical parameters of 
agricultural crop. Some of the findings in agricultural crop 
studies using SAR polarimetry are given in Table 3. 

C. SAR Interferometry 

In SAR interferometric technique, normalized cross-
correlation of two complex signals received in two different 
passes over the study area was used for earth’s surface 
studies (given in Equation 2). The interferometric coherence 
is always high for the stable features like settlements and 
low for the unstable features like surface water. In the 
beginning, this technique was widely used for surface 
movement studies and digital elevation model generation 
[54].  Numerous researchers have demonstrated the potential 
of SAR interferometry for various remote sensing 
applications like plant density mapping, plant height 
estimation, surface water extent in adverse weather 
conditions and detection of human settlements, etc. A few 
important findings of using SAR interferometry for 
agricultural crop studies are given in Table 3. This technique 
is identified both theoretically and experimentally as highly 
reliable for crop height estimation. 

 
                                (2) 

Where * represents a complex conjugate 

D. Polarimetric SAR Interferometry 

Polarimetric SAR Interferometry technique uses fully 
polarimetric SAR data acquired in two passes over the study 
area. Polarimetric SAR data is sensitive to geometrical and 
electrical properties of the scattering elements and allows the 
identification and separation of scattering mechanisms of 
natural media. On the other hand, SAR interferometric data 
are highly sensitive to the vertical structure parameters 
distributed spatially. In polarimetric SAR interferometry 
technique uses the both polarimetric and interferometry 
concept to provide the sensitivity to the vertical distribution 
of scattering mechanisms. The synergic use of SAR 
polarimetric and SAR interferometry can enhance the 
application potential of SAR data [55]. So far, fully 
polarimetric SAR interferometric has been intensively 
studied for earth observation applications. Whereas, limited 
research has been carried using compact polarimetric SAR 
interferometry [56] in the retrieval of agricultural crop 
biophysical parameters. The lack of operationally available 
of SAR sensors providing polarimetric SAR interferometry 
data makes it difficult to carry research on this technique. A 
list of some research works made efforts to retrieve 
biophysical vegetation parameters using polarimetric SAR 
interferometry technique are given in Table 3. 
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III.  RESULTS AND DISCUSSION 

Radar remote sensing data has been largely used for 
agricultural crop characteristics studies in both qualitative 
and quantitative analysis perspective. An understanding of 
the physical and dielectric properties of plants and their 
interaction with different combinations of SAR sensor 
parameters is needed for SAR data analysis. Both the theory 
and technological tools for radar remote sensing have been 
developed for a wide range of agricultural applications. 

A. Crop inventory and Average estimation 

Crop inventory and acreage estimation is the primary step 
for any development and management of crop monitoring 
systems [57]. Crop discrimination based on radar remote 
sensing data is grounded with the concept that each crop has 
its unique influence on the illuminated microwave signal 
depends on its growth stage and condition of the crop [58]. 
McNairn et al., [59] observed that L-band data is more 
suitable to discriminate the larger biomass crops and C-band 
for low biomass crops. It has been observed that the 
multitemporal SAR data is more suitable for crop 
discrimination than the single date SAR data [60]. The color 
composite image using multi-temporal RADARSAT SAR 
data over parts of Bhardaman district, West Bengal, India, 
which is dominated with Paddy fields, is given in Figure 4 
along with the derived Paddy crop map. However, it has 
been suggested that the use of multipolarized and 
multitemporal SAR data in order to improve the overall 
agricultural crop classification accuracy. Since polarimetric 
SAR data has a wide range of information than the polarized 

SAR data, investigators made efforts to develop 
methodologies using polarimetric SAR data for crop 
mapping [61]-[62]. It was reported by Lee et al., [61] that the 
phase difference between the VV and HH polarization is an 
essential factor for crop classification than the cross-
polarization due to its high correlation. 

In contrast to statistical based classification techniques, 
the need for machine learning based classification 
techniques is observed to improve the accuracy due to its 
high influence of speckle noise. Zhang and Wu [63], had 
proposed a methodology for crop classification by using 
forward neural network with adaptive chaotic particle swarm 
optimization (ACPSO). The results of this study showed the 
better performance of ACPSO than back-propagation (BP), 
adaptive BP, momentum BP, particle swarm optimization, 
and resilient back-propagation methods. Researchers have 
also made attempts to delineate the flooded agricultural 
fields. Patel and Panigrahy, [64] have delineated the rice 
fields affected by flash flood using RADARSAT SAR data, 
based on the significant backscatter difference between 
flooded and normal fields. The observed variation of 
backscatter from normal and flood receded rice fields is 
given in Figure 5. One of the current active researches is an 
investigation on potentials of hybrid polarimetric SAR data 
for crop discrimination applications. Uppala et al., [65] had 
analyzed the single date RISAT-1 hybrid polarimetric SAR 
data for rice crop discrimination by subjecting to m-δ, m-χ 
space decompositions and supervised classification. 
Sivasankar et al., [66] investigated the hybrid polarimetric 
decomposition techniques include m-δ, m-χ and m-ψ for 
crop discrimination. 

 

 
Fig. 4: Paddy crop mapping using multi-temporal RADARSAT SAR data 
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Fig. 5: The backscatter characteristics generated from normal, submerged and partially flooded fields before and after the flash flood (A) Aug 29, 1999, and (B) 
Sep 22, 1999 

B. Leaf Area Index 

Leaf area index (LAI) is defined as the ratio of one-sided 
green leaf area to unit ground surface area. Solar radiation is 
the basic source of energy for plants in the photosynthesis 
process, is a major regulator of crop yield. The amount of 
solar energy receiving by the plant is a function of leaf area 
exposed to sunlight. Because of this, knowledge of LAI 
during the complete crop cycle is required to understand the 
crop growth process and to estimate the crop yield [67]. In 
this context, researchers have studied the sensitivity of 
backscattering coefficients of P, L, C, X bands towards the 
leaf area index of broadleaf and narrow leaf crops [20, 68-
69]. These studies have concluded that the P- & L-band is 
useful for broadleaf crops and C- & X-bands for small leaf 
crops. Ulaby et al., [6] had related the backscattering 
coefficients to the LAI and also developed two models, one 
for corn and sorghum and another for the wheat crop, by 
extending the water cloud model of Attema and Ulaby [70]. 
This study was concluded that the backscattering 
coefficients during the early stage of growth, soil 
contribution may be very high, and for end-period before 
harvest, the contribution of soil and stalks are important for 
sorghum and corn, whereas the heads and soil for the wheat 
crop. In another study, Shao et al., [71] successfully 
employed Michigan Microwave Canopy Scattering model to 
estimate LAI of rice using Envisat ASAR data. 

On the other side, several research works have been 
carried out using empirical and semi-empirical based models 
to retrieve the LAI. Paloscia [69], related the backscattering 
coefficients at P-, L- and C-bands with the volumetric leaf 
area index (i.e., the leaf area index multiplied by the average 
leaf thickness) normalized to the wave number for various 
crops including alfalfa, wheat, meadows, sorghum, corn, 
sunflower, and vineyard. Fontanelli et al., [68] analyzed the 
sensitivity of X-band SAR data towards LAI of wheat and 
barley crops. It was observed that the sensitivity to the LAI 
for both the crops at almost senescent phase was not 
significant since the backscatter is mainly related to the 
water content present in the plants, which considerably 
decrease in the ripening phase. It is well known that the 
radar backscatter response from agricultural fields is a 
complex function of several crop biophysical parameters and 

SAR sensor parameters. Since the machine learning 
techniques can resolve the complex relationships, in recent 
past researchers are putting efforts to retrieve LAI and other 
crop biophysical parameters using machine learning 
techniques. 

C. Fresh Biomass 

Discriminating among the crop species and retrieving the 
biomass are among the primary objectives of the radar 
vegetation studies. Fresh biomass primarily refers to the 
fresh weight of the amount of biological or organic matter 
that can derive from a living organism and is an essential 
factor for the plant growth analysis. Several studies with the 
ground-based and spaceborne active satellite sensors have 
provided insight and understanding in the estimation of fresh 
biomass. The backscattering coefficients as well as 
polarimetric parameters have been shown to be sensitive to 
the crop biomass and can be affected by the shape and 
dimensions of plant constituents [72]-[74]. Wu et al., [75] 
analyzed the quad-polarized time series RADARSAT-2 data 
and found that the temporal signature of fresh biomass for 
the Paddy crop showed a good correlation with the 
backscattering coefficient (σ˚) in HV/HH polarization, with 
the R2 greater than 0.8, while the correlation with the 
individual HH and HV channels was lower than 0.6. In a 
similar study, Blaes et al., [76] found VV/VH polarization 
ratio computed at a high incidence angle of 45˚, to be the 
suitable index for the maize crop growth assessment till the 
fresh biomass of 6.5 kg/m2. Patel and Srivastava [74], 
developed the fresh biomass retrieval models for Mustard 
and Wheat crop using the stepwise regression approach. The 
sensitivity of the logarithmically transformed biomass was 
analyzed concerning the full and simulated hybrid 
polarimetric RADARSAT-2 data as well as the backscatter 
data alone. The analysis revealed the parameters derived 
from the fully polarimetric data had the highest correlation 
with the wheat and mustard crop fresh biomass (R2 of 0.85 
and 0.77, respectively) followed by the hybrid polarimetric 
data (R2 of 0.74 and 0.53, respectively). The scatter plot of 
observed and estimated values of fresh biomass for wheat 
and mustard is given in Fig. 6. 

 

 

 
Fig. 6: Observed vs. Estimated for fresh biomass for Wheat and Mustard using fully polarimetric, Hybrid polarimetric and only SAR backscatter;  

The line shown is 1-1 line 
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In another study, Jia et al., [77] utilized the artificial 

neural network algorithm to invert the biomass of Paddy 
fields from the quad-polarized RADARSAT-2 datasets. The 
network trained with the backscattering data simulated using 
the Monte Carlo simulation model gave the accuracy as high 
as 0.989 and RMSE of 0.477 kg/m2 when the inverted 
biomass was compared to the measured biomass values. 
Macelloni et al., [20] utilized the multi-frequency, multi-
temporal polarimetric data at C- and L-bands and found that 
the crop σ˚ and biomass depend upon the plant type, and the 
trend may be different for the narrow and broadleaf crops. In 
the latter case, the σ˚ was found to increase with the biomass 
values, especially at L-band while in case of narrow leaf 
crops, the trend was flat or decreasing, denoting the 
prevalent effect of scattering and absorption in the two 
respective categories. The correlation analysis revealed that 
the LAI could be used as an indicator of the fresh biomass 
since both were correlated with the R2 of 0.81. Mattia et al., 
[78] studied the sensitivity of the L-band backscatter to the 
soil moisture and fresh biomass of wheat crop and found that 
at HH polarization, the interaction with the crop canopy was 
almost negligible, which consequently resulted in no 
correlation between the HH backscattering and fresh 
biomass. 

D. Plant height 

Plant height is one of the important parameters to indicate 
the growth stage of a crop. At present, there are two broad 
categories to retrieve plant height from SAR data. The first 
category makes use of backscattering coefficients, where 
relates the intensity of the backscattered signal with plant 
height. Some studies have provided useful methodologies to 
retrieve plant height from backscattering coefficients 
generated from SAR data [73], [79].  Chakraborty et al., [33] 
analyzed the sensitivity of backscatter towards rice crop 
height using multi-temporal, multi-incidence angle 
RADARSAT Standard beam SAR data. This analysis was 
found that the high incidence angle data (>40˚) is better 
correlated to crop height than the low incidence angle data. 
The developed model based on inversion algorithm retrieved 
the crop height with 90% overall accuracy. However, it was 
found that the intensity of the backscattered signal is more 
sensitive towards plant water content, biomass and LAI than 
plant height [48]. 

On the other hand, researchers have identified the phase 
information from two different passes is more preferable for 
crop height estimation than the backscattering coefficients. 
Srivastava et al., [55] have attempted to evaluate the 
application potential of SAR interferometry for land-cover 
mapping and crop height estimation using ERS-1/ERS-2 
Tandem pair data. This study has concluded that the SAR 
interferometry is preferable for surface water extension 
mapping in typical situations like wind-induced rough water 
surface than from backscatter image. The empirical 
relationship developed between wheat crop height and 
interferometric coherence, given in Fig. 7, yielded the 
correlation coefficient of 0.74 and 0.05 level of significance. 
It is well known that synergic use of signal intensity 
(backscattering coefficient) and interferometric coherence 
can improve the accuracy. In this context, Ballester-Berman 

et al., [80] had developed a retrieval algorithm by adopting a 
two-layer model developed by Cloude and Papathanassiou 
[81], which was made for forest height estimation, for 
vertically oriented crops based on polarimetric SAR 
interferometry. The proposed algorithm was validated 
experimentally with indoor wide-band polarimetric 
measurements on corn and rice fields, and it observed that 
the algorithm performs well only for the coherence of the 
above 0.3 samples. 
 

 
Fig. 7: Variation of interferometric coherence with a height of the wheat 

crop 

E. Crop yield 

The crop yield is a function of several variables, including 
soil moisture, soil fertility, weather conditions and health of 
the plants during the crop growing season [82]-[83]. During 
the 1980’s, the yield was predicted based on the past years’ 
yield scenario and the current weather conditions [84]. The 
yield prediction can be significantly improved by including 
the knowledge of field level soil moisture and plant health 
status during the growing season [85]-[86]. It has been 
identified that LAI, fresh biomass, plant water content, and 
height indicates the plant health status. Remote sensing has 
become the primary source to monitor the field level crop 
biophysical parameters, which intern improves the yield 
prediction. Setiyono et al., [87] estimated the rice yield 
based on Crop Growth Simulation Model (CGSM) of 
Oryza2000 [88]. Plant health status has been indicated with 
LAI and retrieved from the radar backscatter of ASAR WS 
data. To minimize the complexity of these models, 
researchers were also made attempts to estimate yield using 
an empirical approach [89]. Patel et al., [90] has 
conceptualized Interaction Factor (IF) by using volume, 
height, moisture for each of the components and density of 
plant, to exploit the unique interaction of cross-polarized 
SAR with the wheat crop. The proposed IFHead head is given 
in the Equation 3, and the relationship between IFHead and 
number of grains (Yield) is given in Figure 8. The shallow 
incidence angle cross-polarized C-band SAR backscatter is 
also related with IFHead using step-wise regression, which is 
given R2 of 0.78 with 125.83 F value.  

 

     (3) 
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Fig. 8: Variation of number of wheat grains per square meter with IF of wheat head 

 

TABLE III 
A LIST OF FEW IMPORTANT RESEARCH WORKS USED RADAR REMOTE SENSING FOR AGRICULTURAL APPLICATIONS 
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Ballester-Berman et al., [80] Pol. SAR Inter. S, C and X bands     √   
Ulaby et al., [6] Backscatter coefficient X, Ku and Ka bands √       
Ulaby et al., [91] Backscatter coefficient C and L bands  √      
Moran et al., [92] Backscatter coefficient C-band  √     √ 
Wu et al., [93] Backscatter coefficient C-band  √   √   
Paloscia et al., [94] Backscatter coefficient L and X bands  √      
Jang et al., [95] Backscatter coefficient C-band       √ 
Kim et al., [96] Backscatter coefficient X, C and L bands      √  
Inoue and Sakaiya [97] Backscatter coefficient X-band √ √      
Fontanelli et al., [68] Backscatter coefficient X-band √       
Emmerik et al., [98] Backscatter coefficient L, X, C and Ku bands      √  
Uppala et al., [65] Polarimetric SAR C-band       √ 
Haldar et al., [79] Polarimetric SAR C-band  √   √   
Srivastava et al., [55] SAR Interferometry C-band     √   
Patel et al., [17] Backscatter coefficient C and L band    √    
Patel et al., [90] Backscatter coefficient C-band   √     
Patel and Srivastava [74] Polarimetric SAR C-band  √    √  
Tan et al., [99] Polarimetric SAR L-band       √ 
Lopez-Sanchez et al., [100] Pol. SAR Inter. S, C and X bands     √   
Engdahl [101] SAR Interferometry C-band       √ 
Srivastava et al., [48] Polarimetric SAR C-band √ √   √ √  
Erten et al., [102] Backscatter coefficient, 

SAR Interferometry, and 
Pol. SAR Inter. 

X-band     √   

 

IV.  CONCLUSIONS 

Since, electromagnetic signals in visible and infrared 
region cannot penetrate through clouds, limits the optical 
remote sensing data for operational use of agricultural crop 
studies like biomass, crop water content, stem volume, leaf 
area index (LAI) and plant height etc., which is a highly 
variable phenomenon in both spatial and temporal. Remote 
sensing data acquired in microwave region has the edge over 
all other remote sensing techniques for the agricultural crop 
studies due to its all-weather capability and unique 
sensitivity to geometrical, physical and dielectric properties 
of various components of the crop. We reviewed the 
potential of SAR data for agricultural crop studies using 

backscattering coefficients, polarimetric SAR, SAR 
interferometry and polarimetric SAR interferometry. It is 
observed that earlier researchers were used backscattering 
coefficients of single, dual polarized SAR data but the 
accuracy was limited due to the difficulty to distinguish the 
return signal from various components of vegetation. Later 
quad (entirely) linear polarimetric data has been used, with 
which the return signal energy can be distinguished from 
various components of the crop using several scattering 
decomposition techniques. Where volume component 
indicates the return signal from vegetation canopy, even 
bounce indicates the return signal from ground-stem or stem-
ground interaction and odd bounce indicates the return signal 
from the ground. Recent advances of hybrid polarimetry are 
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having advantages over linear polarimetry like low 
susceptibility to noise, self-calibration, higher incident angle 
range coverage, more considerable swath coverage. After the 
launch of RISAT-1 with hybrid polarimetry architecture, 
researchers are showing great interest to study the vegetation 
biophysical parameters using hybrid polarimetric SAR data. 
Interferometry can better estimate vegetation height than 
using backscatter and SAR polarimetry. Moreover, 
polarimetric SAR interferometry gives more information 
than SAR polarimetry and SAR interferometry alone but the 
lack of operational sensor limits this technique for 
operational use. 

This study proposed three types of modeling algorithms 
have been commonly used to study the agricultural crop 
characteristics. Empirical-based: This technique is relatively 
easy to develop the model, but these are vegetation type and 
stage dependent. Machine Learning based: This technique is 
the best suited to understand the relationship between 
vegetation biophysical parameters and SAR data. However, 
it requires a significant amount of in-situ data along with 
SAR data for an accurate and precise agricultural crop 
information retrieval. Radiative Transfer Theory based 
technique gives more accurate irrespective of crop type and 
stage independent. However, the models require auxiliary 
data of the crop or/and soil which is a spatially and 
temporally changing phenomenon. So, it is necessary to 
progress the research in such a way to develop more precise 
crop biophysical parameters retrieval algorithms which 
intern can help to predict the yield from field level. 
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