International Journal on

Advanced Science
Engineering
Information Technology

Vol.2(2012) No. 5
ISSN: 2088-5334

Assessing Right Amount of Quality Assurance (QA) for Software
Products. “A Quality Assurances for Developing Software Projects”
Murtaza Hussain Shaikh”, Mir Sajjad Hussain Talpur”

*Department of Computer and Information Sciences,
Norwegian University of Science and Technology (NTNU), Trondheim -7448, Norway.
E-mail:Murtazahussainshaikh@gmail.com

#School of Information Science and Engineering,
Central South University, Changsha, Hunan Province, 410083, P.R. China.
E-mail: Mirsajjadhussain@gmail.com

Abstract— Quality Assurance (QA) is an important aspect of product development in any industry, not least software development.
To secure an end-product that is as high a quality as possible, thus satisfying the customers, Quality Assurance is essential. A software
application released with several so-called “bugs” and other flaws is obviously a product which has passed through a poor Quality
Assurance process. Thus, it is important to have a proper, systematic program to follow during the developments, which ascertain the
final quality of the product. Too much QA however, can lead to developers focusing too much on analyzing and documenting every
part of the development, ending up with an overload of documentation. This would slow down the development progress, and in the
worst case, Kill of the project. There are two main aspects of this paper; first problems of “inappropriate amount of Software Quality
Assurance” and second is “how we can balance between creativity and quality”? However, we will briefly visit other industries to shed

light on the importance of QA as a whole.

Keywords—Maintainability; Performance; Budget; Standardrization; Assurancel; Verfication; Development; SystemCycle;

Stakeholders; Quality.

I. INTRODUCTION

A natural starting point to our discussion is to assess what
quality and quality assurance in software development
involves. It is not easy to define what exactly constitutes a
quality product. The ISO (International Organization for
Standardization) definition states that quality should consist
of “the totality of characteristics of an entity that bear on its
ability to satisfy stated and implied need” [13]. While in [4]
it states that a quality product should “conform to
requirements”. As for software quality, we can also
incorporate these definitions to constitute a quality software
product, where requirements are the main concept. A
software development project typically starts out with
several requirements received from the customer, which is
further refined into a complete requirement specification.
The final product should naturally conform to these. Still, it
is important to state that software quality involves more than
just the conforming to requirements, and one should take
different viewpoints to decide what represents a quality
product. In addition to both functional and non-functional
requirements of the product, the developers need to conform

35

to the requirements of all the actors in a project such as the
stakeholders, suppliers and so forth. A quality product
should also be cost-effective and competitive in comparison
to rivalling products [3]. As for quality assurance (QA), one
can define it as a process which focuses on monitoring and
evaluating the various aspects of a product development
project [8]. These activities aims to ensure the
manufacturing of a product of sufficient quality, obviously
satisfying customers as well as managers involved in the
project. More specifically, software quality assurance (SQA)
focuses on the same aspects in a software development
process. This will usually include the continuous monitoring
and evaluation of the various aspects of a software
development process such as the requirement specifications,
software design, testing and the actual implementation of
code [9]. SQA means to essentially find faults in these
phases of the process that lead to low quality, thus finding
the source of the problem and then dealing with it [2].
Ensuring the quality of these aspects should ensure the
appropriate quality setting surrounding the project.

II. QUALITY ASSURANCE IN PLANNING PROCESS

The key essence of defining SQA is that it is based on
systematic planning and implementation. This involves all
the various actions and stages during a software
development process. In [2] it offers an even broader
definition of SQA, implying that it should involve service
subsequent to the product's release. By this, one could
interpret that the continuous patching of a software product
can be seen as a stage in the quality assurance process. In
addition, it mentions that the SQA should not be limited to
just the technical actions of a project, but also the other
aspects such as budgeting and scheduling [2].

In the history of software development, several
applications have been released consisting of several flaws,
lowering the overall quality of the product and thus diminish
the reputation of the development company. Due to such
incidents, quality assurance has become an increasingly
important aspect of software development. In software
development, quality assurance come across several specific
complications compared to QA in other industries. A
software application can be seen as an “invisible” product,
meaning that it is not a physical product you can inspect. For
example in quality assurance in car manufacturing, flaws or
errors in the product can be detected by visible observation
on the physical objects being manufactured. However when
it comes to software development, the “building blocks” in
the product are code, which is obviously not physical objects
[1]. Thus it can be noted that the complications of securing
the desired quality in a software product exceeds that of
developing products in many other industries. Due to the
invisible nature of software code, it is hard to spot errors and
flaws in the software while engineering it, without proper
quality assurance techniques. And even when the final
product is released, errors can still be present, but not yet
discovered by the developers. These errors can in the worst
case be discovered by the customers when the software is
utilized. Obviously it is a need for continuous and
comprehensive testing throughout the development process,
and this is an integral part of software engineering.

II1. QUALITY ASSURANCE IN DEVELOPMENT PHASE

The various testing activities is naturally an important part
in assuring the quality of the end-product, however the
process of quality assurance encompasses even more than
just the documentation of the testing and implementation of
software code. As mentioned earlier, SQA is responsible for
monitoring and evaluating the development process as a
whole. Software quality assurance is a systematic pattern
over all the actions needed for securing the quality and
assuring that all the requirements are met. It is a process
used to measure all the activities performed in a
development life-cycle, accomplished through quantifying
the quality of the product and the activities involved in the
development. These various activities include the initial
analysing phases in a project, the software design, as well as
of course the implementation phase. Each of these stages
needs to be validated and put under verification. SQA differs
from quality control in that it is, as mentioned, a continuous
process which aims to guaranteeing the quality of various
activities performed during the development [1]. Another
aspect to software development we should consider in this

36

essay is the creative freedom of developers, and how too
much QA can interfere with this freedom. QA may in some
cases encourage the developers to follow a strict pattern or
plan in what and how they develop. Even if they follow an
agile development process, the QA process might assure that
the developers follow a strict pattern in how they should
solve the problems that occur. This could occur on either the
coding-level or at the project management level. If a
developer discovers a creative solution to a problem the
developer might be unable to utilize his idea, because it
would conflict with the various processes and activities
which are involved in the project. In addition, it also requires
a larger budget for the project to maintain an elaborate QA
process. In a small development team, maintaining such a
process might take too much of the focus away from the
actual development, thus slowing down the progress [6].
Even in a larger development team, dividing too much effort
on securing proper QA might seem counter-effective, and a
waste of the project budget. The trick is then, of course, to
strike the right balance between “the right amount” of QA,
as well as keeping up the creative freedom of the team, and
thus the progress of the project.

IV.BALANCING THE QUALITY IN SOFTWARE

We talked about how to define quality and quality
assurance in software development. In this section we will
talk about how to strike the right balance between too much,
and too little usage of SQA, that is — the right amount of
SQA. We will base this on what the consequences might be
of inappropriate use of SQA. Software quality assurance
involves all phases of software development, from the
planning phase, the design phase, the implementation and
testing phase, as well as the maintenance phase — post
delivery. Since the cost of rectifying errors grows by about
ten times with each stage of development, it is sensible to
incorporate SQA at every step of the system development
life cycle [6]. The way in which lack of proper QA can
affect the software project can be specified from phase to
phase. Lack of proper QA during the designing phase, the
usability of the system might decrease and the user will have
trouble communicating with your system. During
implementation phase, bad structured code might lead to
errors in part of the code which is not easily fixable, due to
the lack of standardization of the code. For instance it might
lack comments or documentation for complicated parts of
the code, describing the functionality. A consequence of this
might that you will spend lots of time and money to detect
each error and fixing it. In standardized code however, it is
easier to locate the error and find the problem in a shorter
time-frame. It is not easy to add more features or renew
messy code, for that reason one should implement every
section in standardized code. As for testing, it should be
important to test often and early in the development. If the
testing only occurs late in the software development life-
cycle, this may lead to greater costs to find and fix defects in
the code [1]. Another aspect to consider during the QA of a
project is security. Lack of QA during the security planning
of software may of course lead to security problems. Thus, a
hacker may attack your system and rub your important
information of your system. When a software development
project adheres to right amount of standards at its
implementation phase, it can have positive effects;

e Programmers can go into any code and figures out
what’s going on, so maintainability, readability and re-
usability are increased. Code walk-throughs become
less painful [11].

e People can get up to speed more easily [11].

e People new to language are spared the need to develop
a personal style and defend it to death [11].

e People new to a language are spared making the same
mistakes over and over again, so reliability is increased
[11].

e People make
environments [11].

e Idiosyncratic styles and college-learned behaviours are
replaced with an emphasis on business concern-high
productivity, maintainability, shared authorship, etc

[11].

fewer mistakes in consistent

Since a very large portion of project scope is after
delivery maintenance or enhancement, coding standards
reduce the cost of a project by easing the learning or re-
learning task when code needs to be addressed by people
other than the author, or by the author after a long
absence[10]. Coding standards help ensure that the author
need not be present for the maintenance and enhancement
phase.

V. DISCUSSION

We will go more in-depth and discuss the effects of lack
of QA in software development. It has become clear that too
little emphasis on QA can lead to a final product of
insufficient quality, which is a real danger in many software
development projects. An example is the situation mentioned
in [2]. In this example the author explains that the opening
of the Denver International Airport USA was delayed for 16
months due to failure in the software of the baggage-system,
which led to an enormous economic loss [1, 2]. This is a
form of QA that allowed for errors, but still maintained a
high enough quality for the product to be a commercial
success. As in this case, if the product consisted of over 500
bugs, could one call it a “quality product™? Different
definitions of quality would give different answers to this
question. However, since the product becomes a commercial
success, it should at least be considered as to be of
“sufficient enough” quality, and thus of sufficient amount of
QA.

The use of a QA process should improve the acceptability
of the product. But what can happen if we use too much
quality assurance in software engineering? The first
impression of using too much quality assurance in different
projects, is its effects on peoples freedom and strict them to
do at a particular context [1]. We can find many examples
where enterprises unintentionally reduced or even killed
creativity and innovation for the sake of control,
performance, and cost reduction. At the one hand if you use
too much quality it makes lots of bureaucratic and on the
other hand paying too attention to the creativity rather than
standardization gives lots of freedoms to the projects, and
lots of freedom may will cause chaos. Considering
creativity without quality will make your structure crucial,
there is no standardization role on your structure and
everything without a strong and determined structure will

37

fall down. Creative tasks are inherently connected to high
variance of possible outcomes, which is due to the fact that
being creative means to be original and come up with novel
ideas and solutions. Using creativity at every projects means
a high demand of flexibility, This may lead to unwanted
consequences, such as losing control of process (losing
control of time and budget), low product quality (which may
lead to customer dissatisfaction), and lack of external
compliance (which can lead to a loss of reputation or even to
lawsuits) [13]. We need a structure to manage creativity
without sacrificing creativity. As we can see on the figure
below, there are lots of activities that should be done at
during the project life cycle to keep balancing between
quality and creativity. It is obvious that we need to allow
creative freedom at our project, because without creativity
and innovation no progress is possible, but at the same time,
try to enhance creativity by calculated management of the
overall phases of our project, like considering aspects such

as performance, cost, or risk.

Fig. 1 A Balanced Quality Assurance in a Software product

Quality assurance improves the acceptability of the
product. It can be useful for developing the long term
strategies for ensuring performance in quality assurance both
internally and externally [6]. The principles in defining
strategy can be useful for consistent, clear and easy to
understand plans [6]. However, sometimes the process may
hinder the flow of work. The quality of the product can be
assessed by auditing at regular periods. The auditing serves
as a process to measure the quality of product [6]. In order
to make this effective, the auditors should be trained and
should have good overview on project. This can be achieved
by either internal training this includes quality measures and
policies of company or any external training. The knowledge
and experience of the auditor also plays an important role in
the quality maintenance [9]. The auditing process is based
mainly upon the documents and company standards, so for
effective quality assurance it needs documentation related to
process involved in product development. It was observed
that auditing process sometimes produced reports with no
findings at Taylor technology [3]. So they came up with an
approach called as “QA signature”. QA assurance is a
process of documenting QA review has been completed [1].
So this approach removes the needless auditing to be done
where there are no findings. The quality assurance becomes
critical in agile processes as the development is done
iteratively. QA is same for agile projects as others with

respect to deliver the product but things will change with

agile development as requirements change continuously [13].

Sometimes testing can become part of quality assurance of
the product. The most common test strategy adopted in agile
settings is TDD (Test Driven Development). So, this ensures
that the product developed is quality assured and tested [5].

VI. CONCLUSION

This paper states the importance of having the right
balance of quality assurances in software-development. Also
in specific; how we can balance between the quality in on
hand, and creativity at the other hand. What we concluded is
that too much quality assurance can be waste time and also
money, yet not enough will impact the effort and schedule
adversely because defects will get through. In the discussion
part, we highlighted about the creativity and quality. The
important thing that using creativity in each project needs
lots of control and management on different parts like risk
management and cost management. The main observation
behind this paper is that the development process can
become dangerous if there is either too much, or too little
focus on QA. The case studies with respect to various firms
like Taylor technology suggests that if the QA is not up to
mark then product is not accepted and if it is too much then
the product is delayed [7]. The challenge faced by many
companies these days is to provide right amount of QA. The
quality assurance process becomes critical in places where
development is done iteratively like agile development. The
quality assurance also depends on the product being
developed [7, 1]. If the product needs too much focus on
quality then quality principles can be strictly implemented
otherwise it can be relaxed for smooth development of the
product. Another aspect that is an important factor in
deciding the amount of QA a project should utilize, is the
size of the project. By size we mean both in terms of the
number of people participating in the project, and of course
the project budget [10]. Naturally, often these factors are
closely linked. A large project with a substantial budget
should have a clear and elaborate focus on the QA process.
This is of course due to the impact poor QA can have on the
project, which increases proportionally with the project size
[5]. The main point however, is that the focus on QA should
not upstage the development process, because this could lead
to stalling of the progress, and thus leads to loss of profit in
this way. On the same point, it is also important to not let the
QA process interfere with the creative freedom of the
developers actually producing the code. Smart solutions to
problems occurring, should not be stopped by maintaining a

38

QA process [12]. By this we can state that a good QA
process should reflect the project in terms of project size,
project budget and not interfere with the creative minds of
the developers. Such usage of QA should in turn lead to a
product of good quality, thus satisfying all the different
actors involved in a software development project.

ACKNOWLEDGMENT

We thankfully acknowledge the helpful comments from
the reviewers, which have improved the paper very
significantly. Finally, we are always thankful to our beloved
parents for their love, trust and support.

REFERENCES

Kevitt Mark (2010)” Best Software Test & Quality Assurance
practices in the project life-cycle. An approach to the creation of a
process for improved test & quality assurance practices in the project
life-cycle of an SME”. Master of Science thesis, Dublin City
University. DOI: 15089. Ireland.

Daniel Galin (2009)”Software Quality Assurance: From Theory to
Implementation”. ISO 9000-3. American Society for Quality. USA.
Bijay K. Jayaswal and Peter C. Patton (2006)” Design for
trustworthy Software” .pp. 213. ISBN 9780132797351. Prentice Hall
PTR USA.

Paulk, Mark C., "A Comparison of ISO 9001 and the Capability
Maturity Model for Software", Software Engineering Institute,
CMU/SEI-94-TR-12, July 1994, pp. 19.

Carmen Zannier, Mike Chiasson, Frank Maurer (2007)” A model of
design decision making based on empirical results of interviews with
software designers”. Information and Software Technology archive
Volume 49 Issue 6, June, 2007. , MA, USA.

M. E. Kabay (2010)” Software development and quality assurance.
An essential component of security”. Network World, Inc. Available
online at http://business.highbeam.com/409220/article-1G1-
220549761/software-development-and-quality-assurance-essential.
[Accessed on: April 15th 2011]

Stefan Seidel, Michael Rosemann (2008)” Creativity Management —
The New Challenge for BPM”. BP Trends , May 2008. Australia.
Bach, James (1995) "The challenge of 'good enough' software."

(1

[2]
[3]

(4]

[3]

(6]

(7]
(8]

American Programmer. USA. Available online at:
http://www.satisfice.com/articles/gooden2.pdf [Accessed on 26th,
February 2011].

[9] Dave Nielsen (2010)” CMM and Project Quality Management”.
Available online at: http://www.pmhut.com/cmm-and-project-
quality-management [Accessed on 26th, February,2011]

O’Hanlon, T., (2011) "Quality Auditing for ISO 9001:2000: Making
Compliance Value-Added". American Society for Quality. USA.
Watts S. Humphrey (1989) “Managing the Software Process”. SEI
Series in Software Engineering. Addison-Wesley, USA.

Hoyle, D (2011)" ISO 9000, Quality Systems Handbook". 4th
Edition, Butterworth-Heineman, Woburn, MA. USA.

International Organization for Standardization, Guidance on the
Process Approach to quality management systems, ISO/TC 176/SC
2/N544, December 2000.

[10]
[11]
[12]

[13]

