International Journal on Vol.10 (2020) No. 1
H ISSN: 2088-5334

Advanced Science >5N: 2088-533

Engineering

Information Technology

TEGDroid: Test Case Generation Approach for Android Apps
Considering Context and GUI Events

Asmau Usmalfi, Noraini Ibrahind, lbrahim A. Salihii*

*Faculty of Sciences, Department of Computer Science, Abdu Gusau Polytechnic Talata Mafara, 892, Zamfara State, Nigeria.
E-mail: asmee08@gmail.com

*Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Johor, Malaysia
E-mail: norain@uthm.edu.my

&Department of Software Engineering, Faculty of Natural and Applied Sciences, Nile University of Nigeria, Abuja, Nigeria
E-mail: ibrahim.salihu@nileuniversity.edu.ng

Abstract— The advancement in mobile technologies has led to the production of mobile devices (e.g. smartphone) with rich innovative
features. This has enabled the development of mobile applications that offer users an advanced and extremely localized context-aware
content. The recent dependence of people on mobile applications for various computational needs poses a significant concern on the
quality of mobile applications. In order to build a high quality and more reliable applications, there is a need for effective testing
techniques to test the applications. Most existing testing technique focuses on GUI events only without sufficient support for context
events. This makes it difficult to identify other defects in the changes that can be inclined by context in which an application runs.
This paper presents an approach named TEGDroid for generating test case for Android Apps considering both context and GUI
Events. The GUI and context events are identified through the static analysis of bytecode, and the analysis of app’s permission from
the XML file. An experiment was performed on real world mobile apps to evaluate TEGDroid. Our experimental results show that
TEGDroid is effective in identifying context events and had 65%-91% coverage across the eight selected applications. To evaluate the
fault detection capability of this approach, mutation testing was performed by introducing mutants to the applications. Results from
the mutation analysis shows that 100% of the mutants were killed. This indicates that TEGDroid have the capability to detect faults

in mobile apps.

Keywords— context event; GUI event; mobile application test case generation; software testing.

Several techniques are used to generate test cases that can
[. INTRODUCTION be run to detect faults. Test cases must be generated from
sSome information, specifically some software artifacts. The
hsoftware artifacts that is wused includes: software
specification documents/or design models; software

build high quality and more reliable applications that can program/source; information about input/output space, and

ain recognition in the high-level competitive application’s information dynamically obtain from program execution
d g d D app - 410]. Most of the approaches dedicated to mobile apps

to validate the quality of the applications. The techniques dynamically analyze an application to generate events
should be able to validate different types of events supportedseql!en(_:e that can later be used as test cases fo test an
by mobile apps [1-4] in order to improve users’ confidence application. . . . . .
in the mobile apps [5-7]. Testing event-driven applications _Nowadays test automation is becoming increasingly
present a great challenge to software testers such as the ne@§Pular_among the software engineering community in
to generate a huge number of possible event sequences th geent times [11-13]. . Numer_ous testing techniques have
could sufficiently cover the application’s state space [8, 9]. een proposed for testing ”_‘Ob"e apps in the past f(_aw years.
However, most of the testing techniques for mobile apps

generate test cases considering only GUI events such as [14,

In recent year’s mobile apps are developed to addre
more critical areas of people’s daily computing needs, whic
brought concern on the quality of applications. In order to

16



15] without sufficient support for testing context events [16, means of detecting context from the dynamically changing
17]. Therefore, it will be difficult to identify other defects in  environment.
the changes in the contexts, which can be inclined by the Dynodroid [20] uses the Adaptive Random technique
context in which an application runs [16]. In order to ensure (ART) to generate a sequence of events that can be used to
that these applications behave correctly, external contextsystematically explore an application. The approach is based
events must be considered during testing such as those froron the observe-select-execute sequence to generate both user
GPS location data, sensors, network in addition to the GUland system events by checking the ones that are relevant to
events. the app. However, one of the limitations of the approach is
There are few testing approaches and techniques thathe restriction of the apps under test from communicating
addressed testing context events for mobile apps such as [16yith other apps. As many Android apps communicate with

18-20]. other apps for shared functionality and some context could
not be detected.
A. Related Works EHBDroid [19] is an approach for testing Android apps

There are only few studies that considered context event hat simulate a large number of events by invoking the event

in the literature. Smart-monkey [7] is a testing approach for . andlers directly. The event han_dlers of an activity are
mobile apps that integrates features of event-based testingiwoked ra!”dom'y which only consider event coverage. The
with random testing. It uses an ART algorithm adapted from @PProach is not based on event sequence.

[21] to automatically generate test cases that are composed

of both GUI events and context events based on event IIl. MATERIAL AND METHOD

sequence distance it measure the distance between the test This paper focused on test case generation for mobile
cases of mobile applications. The aim of the approach is toapps. Most mobile testing technique focused on GUI events
reduce both the number of test cases and the time needed tnly. This contributes to insufficient coverage of mobile
expose the first fault. Extended Ripper [18] is proposed for apps during testing. While, testing context events of mobile
automating testing of Android apps which considers both apps have numerous challenges. The major challenge is how
context events and GUI events for testing Android mobile to identify the context events from an application. Thus, in
apps. It is based on reusable event patterns that weré¢his research both GUI events and context events supported
manually defined after an initial analysis conducted on theby mobile apps are considered. The bytecode and
bug reports of open source applications. Test cases can bmanifest.xml file is analysed to extract GUI events and
generated based on the defined event patterns using threeontext events respectively. Considering GUI analysis in
scenario-based mobile testing approaches: manual, mutationeombination with mobile apps’ permission analysis can
based and exploration based. Since the event patterns argenerate comprehensive events that can be used to generate
derived manually by an expert from analyses of bug history,test cases in order to provide better test coverage. The
the events that may trigger a faulty behavior in an app mayTEGDroid consists of five main steps as shown in Figurel.
not be identified accurately. Moreover, when testing other

types of applications, these event patterns may need to be Sop 1+ Rosouree oxmmetion
redefined. | Dalvik bytecode Andr:)idManifcsl
Greibe et al, [22] propose a model-based approach to 'ﬁ'j” g (Classos.dox) 7 xml
improve the testing of context-aware mobile apps by APK] | & | Jmvabyiccade ] owme Hto
deducing test cases from design-time system models. Z i
Android tool [23] implements a technique to address the F—— ;
context changes in mobile apps called block-based context- | | ——"—7 = |l
sensitive testing. Test cases are split blocks that can be @Emm L D
reused and combined with context changes that are used in 3
testing different scenarios without duplicating the test cases. Swp3:Permission extracton | i
This reduces the effort of writing cases. Yu and Takada [24] ‘
proposed an approach for generating test cases for both GUI 5 Resources combination
and context events from android mobile apps using events
pattern that are derived manually similar to that in [18], || Step 4 Test case generation |
according to the authors their results were inconclusive m
because no bug was found for the set of generated test cases. S
An approach is proposed by [16] to systematically v
generate several executing contexts from the permission of R
an Android app. Their approach analyses the lists of Messrs Code
permissions and the resources that an application uses. —

Variou; contexts are ger_wgrated from a mopile app by Fig. 1 Framework of TEGDroid

permuting resource conditions. The permutations of the

contexts are prioritized and selected for test case generation. .

Few selected apps’ permissions were considered to identify Step 1:Resource Extraction

their related resources and possible states. As such some Android apps are developed in Java and compiled to the

faulty behavior may not be detected and there is no cleardex file which runs on a special virtual machine called
Dalvik Virtual Machine (DVM). They are zipped into a

17



single application package file (APK) that is distributed in dialogs, and menus are considered in the analysis. The
stores from where mobile device users can download to theirLifecycle callbacks for activities, dialogs, and menus
devices. An APK is a compressed file format which contains describe key changes to the observable state and to the
various resources that comprises an Android application. Itpossible run-time events and behaviour.
consists of the program code (dex file), Android Static analysis is generally used by developers and
Manifest .xml file and resources. To analyse the researchers such as [27-29] to analyse software and extract
required resources such as bytecode raadifest.xml information that can be used for software testing, software
the APK file needs to be de-compressed to extract theredocumentation and software understanding. There are
required resources. The outputs generated from this stage argeveral open source tools for static analysis of source code/
the application’s Dalvik Executable file (DEX) that contain bytecode targeting different programming languages and
the Java bytecode of an applicaton and the platform. Examples are WALA framework used in [28] and
AndroidManifest.xml file which contains all the permissions GATOR used in [29]. This study employs static program
used by an app. The next step is to decompile DEX file andanalysis in GATOR [30] tool to obtain the vital information
de-code the Android Manifest .xml for further analysis. about an app that is required to identify supported events for
In order to obtain the bytecode and source code, reversdest case generation, because it is designed specifically for
engineering is applied directly to the DEX file. This file is java and android platform. GATOR is a Program Analysis
further de-compile to the Java bytecode using Dexpler [25] Toolkit for Android that performs control flow analysis on
for the further analysis. The Java bytecode is used as inpu@pplication’s GUIs, callback methods and Intent. A static
for the TEGDroid. control flow analysis is performed on the Java bytecode
AndroidManifest.xml file is an encoded file format by the Which tracks the callback methods and Intent messages. The
Android system. In order to extract app’s permission, the control flow analysis is represented in form of a graph called
extracted AndroidManifest.xml file needs to be de-coded to Windows Transition Graph (WTG). The WTG represents
enable reading its information. The file is de-coded using both the events from the GUI and context events extracted
apktool’'s decode function to enable reading the information through the analysis of callbacks and Intent messaging
of permission. The output of this stage is a readable respectively. We used the WTG to obtain information about
AndroidManifest.xml file that contains declarations of the supported events which is further used as input for test
permissions which an app must have in order to accessase generation. A fragment of the generated WTG is shown
protected resources. in Figure 2 below.

B. Sep 2: Satic Analysis

Static program analysis is the analysis of software that is
performed on the source code or bytecode without executing
el:tem,click

Launcher

the programs to extract some information about the software
[26, 27]. Program analysis is usually performed by a special
automated tool that is designed to extract specific d accountWizard
information. The static analysis targets the GUI events and ~
the set of context events that can be detected vias the
analysis of Intent message through the app’s code.

In Android apps, there is the class which defines an
Activity; the main app component that is responsible for
presenting a GUI window that the user interacts with. The
GUI widgets are linked to the listener object which is in turn
connected to the eventHandlers that are responsible for
executing user events. By analysing the GUI and event
handlers, information about all the GUI events can be
obtained. The context events (otherwise known as system Fig. 2 Example of WTG Generated
events) are generated by the Android system in response to
the device context [24]. Information about these events can The WTG comprises nodes and edges representing app’s
be obtained by analysing the callback and Intent messagingvindow/activity ~ and events respectively. The
system. The analysis performed Intent tracking to identify window/activity comprises GUI and their properties which
the system generated events by the device. The Intentan be used to trigger an event on the app. In order to extract
messaging system is analysed to obtain information aboutinformation (eS) about mobile app supported events from the
the context events. WTG, a graph search algorithm is used on the WTG.

The control-flow analysis focuses on an essential aspectsAlgorithm 1 was designed based on the concept of Dijkstra’s
Android, which are the callbacks for a variety of interactions. algorithm that considers weighted edges to traverse the
It comprises lifecycle and interactions of user event-driven WTG.
components that executes in the app's Ul thread (the main The algorithm traverses the WTG from the start node to
thread). The analysis also targets activities, dialogs, andexplore each path p in the graph as shown in Lines 3-5.
menus as the main components of an app. Two categories dPaths p in the graph represents an event that can be executed
callbacks: Lifecycle callbacks that manage the lifetime of on an application where label assigned to the path indicates
app components and Lifecycle callbacks for activities, the sequence of execution. Based on this, a list of

e:item,click

e7:logltem.click | a_contactList

ed:login /e6:aboutItem,click \ e8:login eS:login

a_login a_about a_changeStatus a_settings

18



application’s supported events is generated with their manifest.xml for Beem app. Using the permission list
sequence of execution. The algorithm continues by generated for an app, the resources used by the app can be
backtracking of each p to identify the source node (Lines 6-identified. The resources are then identified manually by
7). In order to fire the events on an app, information aboutconsidering what does the permission requires in order to
the events that includes handler method and GUI widgets isrun.
required. Therefore, the algorithm gets the GUI widgets

. . : ) TABLE |

contained in each source node and extracts their properties PERMISSIONPROPERTIES
that are view ids and handlers and add the properties to the _
event summaries as in Lines 8-11. Permission Resource | State

At this point, the output is a summary of .aII events |~ \TERNET Radio. on/off
supported by an app. The event summary comprises an event
id, the source of event, destination, event type and GPRS, on/off
processing method. However, due to nature of static analysis Wifi on/off
it does not identify the dynamic behaviour of the resources .
(hardware) from which scenarios of context events are VIBRATE Vibrator on/off
generated. This is main goal of the application of | WRITE_EXTERNAL_STORAGE | Sd card Free/full
combination in order to generate the different states of READ_EXTERNAL_STORAGE Sd card Free/full
resources.

ACCESS_NETWORK_STATE Radio on/off
Algorithm 1: StaticAnalysis Receiver

Input: AUT: App under test

Input: WTG: Windows transition graph (AUT) In order to generate various scenarios of the executing

Output: eS: Events Summaries context of an app, combination technique is applied on the
1 ProcedureanalyseApp(wig) resource conditions. For all resources that have links, the
2 eS— GetEvnetSummaries(p) candidate states can be combined to generate the set of
3 for all pathsP in graphdo executing scenarios. This information is subsequently used
4 while p # exploredthen to generate test cases that are capable of testing the context
5 Evene < getPath(g) events. Based on the state of each resource, they are
6 for all e e EventsSetlo combined.

7 sourceWindowV « getSourceOfPath() In order make sure that app functions correctly, there is
8 foreachw € sourceWindowdo need to have knowledge of the possible states of resource in
9 eh — getEventHandler() order to know the different behaviours that can be triggered
10 gw — getGUIWidgets() by the resource state [32]. Th!s can h_elp a tester to know the
11 id— getPropertiegW) root cause of test failure during testing. The results of the
12 eSadde,id,gw,eh) combination are used to manually and add the conditions for
13 End the test scenarios to the test cases.

14 End

15 End D. Sep 4: Test Case Generation

16 End

In software engineering a test case is regarded as a set of
conditions under which a tester will determine whether an
application software system or one of its features is working
C. Step 3: Permission Extraction as it was originally established for it to do. It may take many

test cases to determine that a software program or system is

The xml file contains all permissions assigned 10 an .,ngjgered sufficiently analyzed to be released.
application. The permission list comprises all the resources There are several test generation techniques for test

e.g., camera, GPS that a mobile app may potentially require, s mation such as script based, random, capture/replay,
to run and the context events usually occur from the

db bil heref b Ivsi search based and model based. Each technique uses a
resources used by a mobile app [31]. Therefore, by analysinge cific formalism of algorithm to process the application’s

thebse perrr;lss;]ons, the resources cand bbe (:]etected aNfhformation to generate test cases. In this study, search-based
subsequently the context events triggered by the resource?esting technique is utilized for generating test cases. Search-

can be |dent.|f|e.d. . L . based testing technique help in reducing the costs of testing
The permissions assigned to an application are declared ”?Jsing the smallest set of test cases that can cover all the

a <uses permission> tag in the manifest file as shown in therJranches in a program. The event summaries (eS) extracted

example be'OV.V: . by Algorithm 1 is used as input for test case generation.
<uses.p.erm|ss_|(3n . o Robotium testing framework is used to generate JUnit test
Android:name="android.permission.INTERN cases that can be run test an app. The rule guiding the test

ET case generation is defined as follows.
> . . o Rule: [Test generation]. For each event el, e2,
The extracted output is a list of all permissions declared e3, . . . the event ick(ei) s translated to a matching

for the app. Table | shows a list of the permissions from Robotium API call which can trigger the event

19



The description of the test case generation process igpopular benchmarks with different functionalities. The
described in algorithm 2. The algorithm receives the eS assource lines of code of the apps ranges from 1.6K to 97K
input for test case generation. Each event in the eventwith average of 20.8K. With average of 1432 classes, 2458
summaries is a test path that can be translated to a test caseethods and 14.4 activities.

Beginning from the start state (event with id 1), the

Algorithm extracts each event with the event id, widget and TABLE Il
BENCHMARKS OF THEAPP S USED FOREVALUATION

handler and translate it to a test case as shown in (Lines 2-4 T <oc T Eloc Tai othod T Aot
The algorithm adds each generated test case to the list of test pp Mame ass eho vy
cases with the triggers in lines 6-9. Barcodescane[ 6549 3477 110 565 9
i Beem 21179 9123 227 1640 12
Algorithm 2: Generate TestCases i
Marine 1654 904 92 150 4
Input: AUT: App under test, eS. Event Summaries Compass
Output: TC: Test Cases Open Camera| 4862| 2263 25 195 2
1 Procedure Generate Test case() Pedometer 14654 6380 220§ 11487 2
2 testPath P, < getEvent¢S) Subsonic 17774 8798 702 [ 4602 13
3 while P, not emptydo TiopyTipper | 2284 | 1004 | 67 | 225 6
4 testCasdc «— genTestCase() -
WordPress 97891 70596 8029 1309 68
5 foreachTc € Tc setdo
6 Wp — getWidgetProperties() Average 20856 12818 1432 2458 14.5
7 W « getWidget()
8 h — getHandler() Two experiments were conducted to evaluate TEGDroid:
9 Tc.addewp,h) code coverage analysis and mutation testing. Subsequent
10 End sections present discussion on the results of the experiment

11 End tal evaluation.

A. Coverage Result
TheeSis used as input for the test generation algorithm  Thjs study has the main aim of checking the effectiveness
to generate test cases for a given app by picking each everdf TEGDroid in terms of the coverage achieved on
from the eS to generate sequence of test cases as describagplications. Code coverage is used by several researchers
above. The output from the test generation algorithm is a se@nd practitioners as a system of evaluating the effectiveness
of test cases for each given app. However, script-basedP t€sting techniques. Code coverage is a measure used to
technique is used to manually write test condition for the testdescnbe the degree to which the source code of a program is

. . o .executed when a particular test case runs [33, 34]. When the
scenarios obtained from the resource combination and add 'bercentage measure of a program has high code coverage, it

to the test cases generated. The scripted-based testingas had more of its source code executed during testing. This
technique offers scripting languages which control an appsuggests it has a lower chance of containing undetected
programmatically that help a tester to write test scripts software bugs compared to a program with low code

manually. It is done by giving a set of instructions that will coverage.
be performed on the system under test to trigger events in
order to test that the system functions as expected. COVERAGE%

Ill. RESULTS ANDDISCUSSION

In order to measure the effectiveness of the TEGDroid, a 1
case study was conducted on real-world Android application %
from GitHub and SourceForge. Eight (8) open source apps

10

were selected across different categories such as, tools,
communication, music and audio. These apps were used by

& > oS oS )
& L0 & & &
5 o o
& N &

other researchers for testing to evaluate their approach. \\.p\‘ & e & ¢ &
i i i T S § S & <8 §
Experimental Setup. An Android device (real or g & & & & & &
emulated device) is needed in order to test a mobile app. In | & o} N N

this research, an emulator was configured based on x86 Intel
configuration with Android version 5.1 for the experiment. °
1GB of memory was configured on the emulator to host the Fig. 3 Coverage of TEGDroid
applications and logs. Specifically, Ubuntu 16.04 was used

in running the experiments. The PC used is equipped with an There are several tools used for measuring code coverage
i7 Intel processor with 8GB of RAM. for different programming languages such as jacoco and

Benchmark. Table Il presents list of the selected EmMma. Emma code coverage library has now been built-in
applications used for evaluation of TEGDroid. The apps aret0 the Android SDK which makes it easy to use for
downloaded from GitHub and Sourceforge, which are Mmeasuring the coverage during testing of Android mobile

20



apps. This has made Emma [35] popular and is used by dor tests [42]. The mutation analysis is represented as
variety of mobile apps testing techniques to measure themutation scores (MS)
code coverage. In this study, muDroid [40] is used for mutants generation
Figure 3 show the results obtained by the TEGDroid on and running mutation. MuDroid is an open source mutation
the seven selected apps. Based on the results, TEGDroid hagsting technique for android apps that generates mutants
achieved LOC coverage of 79% for BarcodeScanner app, 83j4sed on six operators Arithmetic Operator Replacement
for Beem app, 91% for MarineCompass, 78% for (z\OR), Inline Constant Replacement (ICR), Logical
OpenCamera, 86% for Pedometer, 78% for Subsonic, 82%cqnnector Replacement (LCR), Negative Operator Inversion
for _TlppyT|pper and 65% fgr W(grdPress. TEG!Dr0|d (NOI), Return Value Replacement (RVR) and Relational
ZchlseveddLOC coverage of 65% -91% across the eight (8)Operator Replacement (ROR). It performs an analysis during
Pps Used. testing to determine if the generated mutants are alive or
killed. The test cases generated from the TEGDroid are
injected into the muDroid to run test on an app. During

% testing, when the test cases detect a mutant in an app, then

Comparison of code coverage

r |

the mutant is said to be killed. Once the mutants are killed, it
shows that the generated test cases have the capability to
reveal many faults in mobile apps.
Z 50 muDroid generates several mutants in hundreds or
R _I_ thousands based on the size of a mobile app. To run
thousands of mutants on an app, it requires a lot of resources
and time [40]. To make the testing practical, muDroid
employs several selection criteria which a tester can choose
for the mutant selection. The random selection criterion is
EHBDroid  ERipper Dynodroid Songetal TEGDroid configured for mutant selection, because it is an efficient
Fig. 4 Comparison of Coverage Results way to reduce the number of mutants by randomly selecting
o ) x% from the total mutants and it is the most common used
We statistically performed a comparison of code coverage cost reduction strategy [40]. Based on the experiment for the
rgsults of TEGDrolld with other approaches as shown i eight apps, MuDroid generates a total number of 34,275
Figure 4. The y-axis represents the code coverage result ifmytants for the six mutation operators, as shown in Table I1.
percentage and x-axis shows the approaches used in thBased on the criterion, some mutants were selected for each
comparison. When we look at the spread of the coverage, ithytation operators.
shows that the coverage achieved for most of the Based on the results, all the selected mutants for the
applications is 57% - 83% by EHBDroid, 57% - 82% by operators were killed with ROR having the highest mutation
E.Ripper, 61% - 77% by Dynodroid, 45% - 47% by Song et score of 2.402 for the total number of all the applications
al., TEGDroid obtained 79% - 84%. For the median of the mutation score as shown in Table IV. A total of 6314
coverage EHBDroid obtained 78.3%, E.Ripper 67%, mutants were selected for the test for all the applications.
Dynodroid 76.6%, Song et al. 46.5% and TEGDroid Based on the results, all the selected mutants were killed
achieved 80.5. In comparison to the other approacheswith a mutation score MS=1.000 for each application. It can
TEGDroid obtains higher coverage above the median forbe concluded that the test sets generated from our approach
most of the applications. This indicates that TEGDroid have have high mutant coverage, therefore it has the capability to
higher code coverage compared to all the approaches. reveal many faults in mobile apps.

verage

—

—
—

B. Fault Detection using Mutation Testing IV. CONCLUSION

Code coverage has been recently criticized by many In this paper, we have presented an approach called
researchers [36-38] for validating the quality of software. TEGDroid for generating test case for Android Apps
Mutation testing changes a software artifact such as aconsidering context and GUI Events. An experiment was
program, requirements specification, or a configuration file performed on real world open source mobile apps to
to create new versions called mutants [39]. It is also calledevaluate TEGDroid. Experimental result indicated that
fault-based testing technique which measures the faultTEGDroid can significantly achieve high coverage as
detection ability of a given test set by measuring the numbercompared to other state-of-the-art approaches. We applied
of mutants being killed [40]. The general principle mutation testing to evalugte the fal_JIt detection capability of
underlying mutation testing work is that the faults used by OUr approach. The mutation analysis result shows that 100%
mutation testing represent the mistakes that programmer®f the generated mutants were killed. This indicates that
often make [41]. By Comparing mutation with other TEGDroid have the capability to detect faults in mobile
traditional testing technique like line coverage which only a
measures the percentage of code being executed, mutation
testing could actually identify the ability of fault detection

21



TABLE Il

MUTANTS GENERATED FOREIGHT SELECTEDAPPS

Application Mutants Mutant operators

Generated | Selected AOR ICR LCR| NOI| ROR| RVR
BarcodeScanner 5130 536 34 165 45 0 83 209
Beem 4949 401 48 118 81 0 59 95
MarineCompass 926 92 36 15 0 0 40 1
Open Camera 4664 320 95 55 8 0 157 5
Pedometer 9499 1476 378 439 0 0 578 84
SubsonicMusic 8118 665 77 160 121 0 112 195
TippyTipper 989 178 27 57 10 0 41 43
WordPress 17643 2646 410 222 169 0 1029 815
Total 52918 6314 1105 1231 434 0 2099 1447

TABLE IV
MUTATION SCORE

Application Mutants Mutation Score of the operators MS

Selected| Killed| AOR| ICR | LCR | NOI | ROR | RVR
BarcodeScanner 536 536 0.0p3 0.307 0.p84 0j000 Q.154 p.389 [.000
Beem 401 401 0.119 0.294 0.202 0.000 0.147 0.236 1.000
MarineCompass 92 92 0.391 0.1p3 0.q00 0.p00 0f434 (.010 1.000
OpenCamera 320 320 0.297 0.172 0.025 0.000 0.491 0.p16 1.000
Pedometer 1476 1476 0.25¢ 0.29f 0.000 0.0p0 0.389 0.p56 1.poo
SubsonicMusicStreamgr 665 665 0.115 0.240 0{182 (.000 .168 [0.293 [1.000
TippyTipper 178 178 0.152 0.320 0.0896 0.000 0.230 0.242 1.000
WordPress 2646 2646 0.15§ 0.084 0.084 0.0p0 0.389 0.808 1.poo
Total 6314 6134 1.544 1.87F 0.613 0.0p0 2.402 1.p50 1.p00

[6] B. N. Nguyen, B. Robbins, I. Banerjee, and A. Memon, "GUITAR:
ACKNOWLEDGMENT an innovative tool for automated testing of GUI-driven software,"

We would like to acknowledge the support from Ministry (7]

of Higher Education and university Tun Hussein Onn
Malaysia (UTHM) in undertaking the research under the
Graduate Research Assistant for Postgraduate Research]
Grants (GPPS) and Fundamental Research Grant (FRGS)
Vot number 1610.

(1

(2

(3]

(4]

(5]

[l
REFERENCES

H. Muccini, A. Di Francesco, and P. Esposito, "Software testing of [10]
mobile applications: Challenges and future research directions," in

7th International Workshop on Automation of Software Test (AST),
2012, pp. 29-35.

T. Tamilarasi and M. Prasanna, "Research and Development on[11]
Software Testing Techniques and Tools," in Encyclopedia of
Information Science and Technology, Fourth Edition, ed: IGI Global,
2018, pp. 7503-7513.

I.-A. Salihu, R. Ibrahim, B. S. Ahmed, K. Z. Zamli, and A. Usman,
"AMOGA: A Static-Dynamic Model Generation Strategy for Mobile
Apps Testing," IEEE Access, vol. 7, pp. 17158-17173, 2019.

I. Qasim, F. Azam, M. W. Anwar, H. Tufail, and T. Qasim, "Mobile
User Interface Development Techniques: A Systematic Literature [13]
Review," in IEEE 9th Annual Information Technology, Electronics
and Mobile Communication Conference (IEMCON), 2018, pp. 1029-
1034.

D. Amalfitano, A. R. Fasolino, and P. Tramontana, "A gui crawling-
based technique for android mobile application testing," in Fourth
International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), IEEE, 2011, pp. 252-261.

(12]

(14]

22

Automated Software Engineering, vol. 21, pp. 65-105, 2014.

Z. Liu, X. Gao, and X. Long, "Adaptive random testing of mobile
application,” in 2nd International Conference on Computer
Engineering and Technology (ICCET), 2010, pp. V2-297-V2-301.

I. C. Morgado, A. C. Paiva, and J. P. Faria, "Automated pattern-
based testing of mobile applications," in 9th International Conference
on the Quality of Information and Communications Technology
(QUATIC), 2014, pp. 294-299.

I. A. Salihu and R. Ibrahim, "Comparative Analysis of GUI Reverse
Engineering  Techniques,” in Advanced Computer and
Communication Engineering Technology, ed: Springer, 2016, pp.
295-305.

S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W.
Grieskamp, et al., "An orchestrated survey of methodologies for
automated software test case generation," Journal of Systems and
Software, vol. 86, pp. 1978-2001, 2013.

P. Aho, M. Suarez, A. Memon, and T. Kanstrén, "Making GUI
Testing Practical: Bridging the Gaps,” in 12th International
Conference on Information Technology-New Generations (ITNG),
2015, pp. 439-444.

D. Amalfitano, N. Amatucci, P. Tramontana, A. R. Fasolino, and A.
M. Memon, "A General Framework for comparing Automatic
Testing Techniques of Android Mobile Apps," Journal of Systems
and Software, 2016.

P. Kong, L. Li, J. Gao, K. Liu, T. F. Bissyandé, and J. Klein,
"Automated testing of android apps: A systematic literature review,"
IEEE Transactions on Reliability, vol. 68, pp. 45-66, 2018.

I. A. Salihu and R. Ibrahim, "Systematic Exploration of Android
Apps' Events for Automated Testing," in Proceedings of the 14th
International Conference on Advances in Mobile Computing and
Multi Media, 2016, pp. 50-54.



[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, [28]
"Reducing combinatorics in GUI testing of android applications," in
Proceedings of the 38th International Conference on Software
Engineering, 2016, pp. 559-570.

K. Song, A.-R. Han, S. Jeong, and S. D. Cha, "Generating various [29]
contexts from permissions for testing Android applications,” in
SEKE, 2015, pp. 87-92.

A. Méndez-Porras, C. Quesada-L6pez, and M. Jenkins, "Automated
testing of mobile applications: a systematic map and review," in [30]
XVIII Ibero-American Conference on Software Engineering, Lima- [31]
Peru, 2015, pp. 195-208.

D. Amalfitano, A. R. Fasolino, P. Tramontana, and N. Amatucci,
"Considering context events in event-based testing of mobile
applications," in IEEE Sixth International Conference on Software [32]
Testing, Verification and Validation Workshops (ICSTW), 2013, pp.
126-133.

W. Song, X. Qian, and J. Huang, "Ehbdroid: beyond GUI testing for

android applications,” in Proceedings of the 32nd IEEE/ACM [33]
International Conference on Automated Software Engineering, 2017,
pp. 27-37. [34]

A. Machiry, R. Tahiliani, and M. Naik, "Dynodroid: An input
generation system for android apps," in Proceedings of the 9th Joint
Meeting on Foundations of Software Engineering, 2013, pp. 224-234.

T. Y. Chen, F.-C. Kuo, R. G. Merkel, and T. Tse, "Adaptive random [35]
testing: The art of test case diversity," Journal of Systems and
Software, vol. 83, pp. 60-66, 2010.

T. Griebe and V. Gruhn, "A model-based approach to test automation
for context-aware mobile applications," in Proceedings of the 29th
Annual ACM Symposium on Applied Computing, 2014, pp. 420-427. [37]
T. A. Majchrzak and M. Schulte, "Context-dependent testing of
applications for mobile devices," Open Journal of Web Technologies
(OJIWT), vol. 2, pp. 27-39, 2015.

S. Yu and S. Takada, "Mobile application test case generation
focusing on external events," in Proceedings of the 1st International
Workshop on Mobile Development, 2016, pp. 41-42.

A. Bartel, J. Klein, Y. Le Traon, and M. Monperrus, "Dexpler:
converting android dalvik bytecode to jimple for static analysis with
soot," in Proceedings of the ACM SIGPLAN International Workshop [40]

(36]

(38]

(39]

on State of the Art in Java Program analysis, 2012, pp. 27-38. [41]
B. Wichmann, A. Canning, D. Clutterbuck, L. Winsborrow, N. Ward,

and D. Marsh, "Industrial perspective on static analysis," Software
Engineering Journal, vol. 10, pp. 69-75, 1995. [42]

S. Yang, H. Wu, H. Zhang, Y. Wang, C. Swaminathan, D. Yan, et al.,
"Static window transition graphs for Android," Automated Software
Engineering, vol. 25, pp. 833-873, 2018.

23

W. Yang, M. R. Prasad, and T. Xie, "A grey-box approach for
automated GUI-model generation of mobile applications,” in
International Conference on Fundamental Approaches to Software
Engineering, 2013, pp. 250-265.

I. A. Salihu, R. Ibrahim, and A. Mustapha, "A Hybrid Approach for
Reverse Engineering GUI Model from Android Apps for Automated
Testing," Journal of Telecommunication, Electronic and Computer
Engineering (JTEC), vol. 9, pp. 45-49, 2017.

"GATOR: Program Analysis Toolkit For Android."

S. Mujahid, R. Abdalkareem, and E. Shihab, "Studying permission
related issues in android wearable apps," in 2018 IEEE International
Conference on Software Maintenance and Evolution (ICSME), 2018,
pp. 345-356.

A. Usman, N. Ibrahim, and I. A. Salihu, "Test Case Generation from
Android Mobile Applications Focusing on Context Events,” in
Proceedings of the 2018 7th International Conference on Software
and Computer Applications, 2018, pp. 25-30.

J. Levinson, Software Testing with Visual Studio 2010: Pearson
Education, 2011.

F. Horvath, T. Gergely, A. Beszédes, D. Tengeri, G. Balogh, and T.
Gyiméthy, "Code coverage differences of Java bytecode and source
code instrumentation tools," Software Quality Journal, vol. 27, pp.
79-123, 2019.

2018 Emma, An open source Java code coverage tool [Online].
Available: http://emma.sourceforge.net/.

G. Gay, M. Staats, M. Whalen, and M. P. Heimdahl, "The risks of
coverage-directed test case generation," IEEE Transactions on
Software Engineering, vol. 41, pp. 803-819, 2015.

L. Inozemtseva and R. Holmes, "Coverage is not strongly correlated
with test suite effectiveness," in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 435-445.

R. Gopinath, C. Jensen, and A. Groce, "Code coverage for suite
evaluation by developers," in Proceedings of the 36th International
Conference on Software Engineering, 2014, pp. 72-82.

M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. Le Traon, and M.
Harman, "Mutation testing advances: an analysis and survey," in
Advances in Computers. vol. 112, ed: Elsevier, 2019, pp. 275-378.

Y. Wei, "MuDroid: Mutation Testing for Android Apps," 2016.

Y. Jia and M. Harman, "An analysis and survey of the development
of mutation testing," IEEE transactions on software engineering, vol.
37, pp. 649-678, 2011.

C. lida and S. Takada, "Reducing mutants with mutant killable
precondition," in 2017 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW), 2017, pp.
128-133.





