Application of 60/70 Grade Bitumen with Layer Variations on Ballast Structures

Dian M. Setiawan


The conventional track application dominates the Indonesian rail track type. The rail track deterioration due to the overloading train becomes a crucial issue since it leads to high maintenance costs. Damage to the rail track can reduce its service life and carrying capacity. This research utilized the 60/70 grade bitumen as a binding material and stabilization of ballast structure. The aim is to analyze the mechanical behavior of new-ballast and poor-ballast structures, with 4% of the 60/70 grade bitumen in one layer (ballast surface layer) and three layers. The specimen’s weight, vertical deformation, elastic modulus, and ballast material abrasion have been analyzed using a UTM compressive strength test. The most obvious finding to appear from this research is that the new-ballast-based specimen, as for being free of mud and dust, was lighter in weight than the poor-ballast-based sample. Furthermore, the new-ballast and poor-ballast-based specimens added with 4% of the 60/70 grade bitumen had a lower vertical deformation than the baseline specimen. The position of 4% of the 60/70 grade bitumen on the ballast surface layer produced an optimum load distribution to the overall ballast layer. Also, the specimens consisting of new-ballast produced a higher elastic modulus compared to the specimens comprising poor-ballast. Lastly, the presence of the well-distributed asphalt on three layers of ballast structure could produce the minimum abrasion value due to the possibility that asphalt materials could protect ballast materials from abrasion.


60/70 grade bitumen; ballast abrasion; elastic modulus; specimen’s weight; vertical deformation

Full Text:



J. A. Zakeri, and S. A. Mosayebi, “Study of ballast layer stiffness in railway tracks,” Gradevinar, vol. 68(4), pp. 311–318. 2016. DOI: 10.14256/JCE.1232.2015.

G. D’Angelo, N. H. Thom, and D. Lo Presti, “Bitumen stabilised ballast: A potential solution for railway track-bed,” Construction dan Building Materials, vol. 124, pp. 118–126. 2016. DOI: 10.1016/j.conbuildmat.2016.07.067.

P. K. Woodward, A. El Kacimi, O. Laghrouche, G. Medero, and M. Banimahd, “Application of polyurethane geocomposites to help maintain track geometry for high speed ballasted railway tracks,” Journal of Zhejiang University Science, vol. 13(11), pp. 836–849. 2012. DOI: 10.1631/jzus.A12ISGT3.

M. Sol-Sánchez, F. Moreno-Navarro, M. C. and Rubio-Gámez, “The use of deconstructed tires as elastic elements in railway tracks”. Materials, vol. 7(8), pp. 5903–5919. 2014. DOI: 10.3390/ma7085903.

C. H. Signes, P. M. Fernandez, J. Garzon-Roca, M. E. G. de la Torre, and R. I. Franco, “An evaluation of the resilient modulus and permanent deformation of unbound mixture of granular materials and rubber particles from scrap tyres to be used in sub-balast layers,” Transportation Research Procedia, vol. 18, pp. 384–391. 2016. DOI: 10.1016/j.trpro.2016.12.050.

S. M. Asgharzadeh, J. Sadeghi, P. Peivast, and M. Pedram, “Fatigue properties of crumb rubber asphalt mixtures used in railways,” Construction and Building Materials, vol. 184, pp. 248 – 257. 2018. DOI: 10.1016/j.conbuildmat.2018.06.189.

M. Sol-Sánchez, N. H. Thom, F. Moreno-Navarro, M. C. Rubio-Gamez, and G. D. Airey, “A study into the use of crumb rubber in railway ballast,” Construction and Building Materials, vol. 75, pp. 19–24. 2015. DOI: 10.1016/j.conbuildmat.2014.10.045.

A. D'Andrea, G. Loprencipe, and E. Xhixha, “Vibration induced by rail traffic: Evaluation of attenuation properties in a bituminous sub-ballast layer, ” Procedia - Social and Behavioral Sciences, vol. 53, pp. 245–255. 2012. DOI: 10.1016/j.sbspro.2012.09.877.

S. H. Lee, J. W. Lee, D. W. Park, and H. V. Vo, “Evaluation of asphalt concrete mixture for railway track,” Construction and Building Materials, vol. 73, pp. 13–18. 2014. DOI: 10.1016/j.conbuildmat.2014.09.053.

S. Bressi, J. Santos, M. Giunta, L. Pistonesi, and D. Lo Presti, “A comparative life-cycle assessment of asphalt mixture for railway sub-ballast containing alternative materials,” Resources, Conservation & Recycling, vol. 137, pp. 76–88. 2018. DOI: 10.1016/j.resconrec.2018.05.028.

G. D’Angelo, D. Lo Presti, and N. H. Thom, “Optimisation of bitumen emulsion properties for ballast stabilisation,” Materiales de Construcción, vol. 67(327), pp. 124-e124. 2017. DOI: 10.3989/mc.2017.04416.

G. Di Mino, M. Di Liberto, C. Maggiore, and S. Noto, “A dynamic model of ballasted rail track with bituminous sub-ballast layer,” Procedia - Social and Behavioral Sciences, vol. 53, pp. 366–378. 2012. DOI: 10.1016/j.sbspro.2012.09.888.

A. Keene, J. M. Tinjum, and T. B. Edil, “Mechanical properties of polyurethane-stabilised ballast,” Geotechnical Engineering Journal, Vol. 45(1-4), pp. 66-73. 2014.

D. M. Setiawan, “Worldwide hot mix asphalt layer application and scrap rubber and bitumen emulsion studies on railway track-bed,” Semesta Teknika, vol. 21(2), pp. 166–177. 2018. DOI: 10.18196/st.212223.

F. M. Soto, and G. Di Mino, “Increased stability of rubber-modified asphalt mixtures to swelling, expansion and rebound effect during post compaction,” International Journal of Transport and Vehicle Engineering, vol. 11(7). pp. 1307–6892. 2017. DOI: 10.1999/1307-6892/73683.

L. Pirozzolo, M. Sol-Sanchez, F. Moreno-Navarro, G. Martinez-Montes, and M. C. Rubio-Gámez, “Evaluation of bituminous sub-ballast manufactured at low temperatures as an alternative for the construction of more sustainable railway structures,” Materiales De Construcción, vol. 67, pp. 128-e128. 2017. DOI: 10.3989/mc.2017.04816.

D. M. Setiawan, S. A. P. Rosyidi, and C. Budiyantoro, “The Role of Scrap Rubber, Asphalt and manual compaction against the quality of ballast layer,” Jordan Journal of Civil Engineering, vol. 13(4), pp. 594-608. 2019.

A. S. Hameed, and A. P. Shashikala, “Sustainability of rubber concrete for railway sleepers,” Perspectives in Science, vol. 8, pp. 32–35. 2016.

S. K. Navaratnarajah, and B. Indraratna, “Use of rubber mats to improve the deformation and degradation behavior of rail ballast under cyclic loading,” Journal of Geotechnical and Geoenvironmental Engineering, vol. 143(6), pp. 04017015–1. 2017. DOI: 10.1061/(ASCE)GT.1943-5606.0001669.

T. Abadi, L. Le Pen, A. Zervos, and W. Powrie, “A review and evaluation of ballast settlement models using results from the Southampton Railway Testing Facility (SRTF),” Procedia Engineering, vol. 143, pp. 999–1006. 2016. DOI: 10.1016/j.proeng.2016.06.089.

D. M. Setiawan, and S. A. P. Rosyidi, “The role of compaction and scrap rubber size against the performance of ballast layer,” International Journal of Civil Engineering and Technology (IJCIET), Vol. 9(13), pp. 1275–1286. 2018.

D. M. Setiawan, and S. A. P. Rosyidi, “Vertical deformation and ballast abrasion characteristics of asphalt-scrap rubber track bed,” International Journal on Advanced Science, Engineering dan Information Technology, vol. 8(6), pp. 2479–2484. 2018. DOI: 10.18517/ijaseit.8.6.7411.

S. A. P. Rosyidi, Rekayasa Jalan Kereta Api. Yogyakarta, Indonesia: LP3M-UMY, 2016.

The test method of density and absorption of coarse aggregates (Cara uji berat jenis dan penyerapan agregat kasar), SNI 1969-2008, Badan Standardisasi Nasional, Jakarta, Indonesia, 2008.

The test method of aggregate wear with the Los Angeles abrasion machine (Cara uji keausan agregat dengan mesin abrasi Los Angeles), SNI 2417:2008, Badan Standardisasi Nasional, Jakarta, Indonesia, 2008.

The test methods of clay clumps and easily broken items in aggregate (Metode pengujian gumpalan lempung dan butir-butir mudah pecah dalam agregat), SNI 03-4142-1996, Badan Standardisasi Nasional, Jakarta, Indonesia, 1996.

The method for asphalt specific weight test (Cara uji berat jenis aspal keras), SNI 2441-2011, Badan Standardisasi Nasional, Jakarta, Indonesia, 2011.

The method for asphalt penetration test (Cara uji penetrasi aspal), SNI 2456-2011, Badan Standardisasi Nasional, Jakarta, Indonesia, 2011.

The test method for asphalt softening point with ring and ball tools (Cara uji titik lembek aspal dengan alat cincin dan bola), SNI 2434-2011, Badan Standardisasi Nasional, Jakarta, Indonesia, 2011.

Oil and asphalt weight-loss testing method by method A (Metode pengujian kehilangan berat minyak dan aspal dengan cara A), SNI 06-2440-1991, Badan Standardisasi Nasional, Jakarta, Indonesia, 1991.

The test method for asphalt ductility (Cara uji daktilitas aspal), SNI 2432-2011, Badan Standardisasi Nasional, Jakarta, Indonesia, 2011.

Concrete compressive strength testing method (Metode pengujian kuat tekan beton), SNI 03-1974-1990, Badan Standardisasi Nasional, Jakarta, Indonesia, 1990.

The test method for compressive strength of concrete with cylindrical test specimens (Cara uji kuat tekan beton dengan benda uji silinder), SNI 1974-2011, Badan Standardisasi Nasional, Jakarta, Indonesia, 2011.

Service Regulation No. 10 of 1986 concerning Regulations on Rail Road Construction Planning (Peraturan Dinas No. 10 Tahun 1986 tentang Peraturan Perencanaan Konstruksi Jalan Rel), Sekretariat Negara, Jakarta, Indonesia, 1986.

Minister of Transportation Regulation No. 60 of 2012 concerning Railroad Technical Requirements (Peraturan Menteri Perhubungan No. 60 Tahun 2012 tentang Persyaratan Teknis Jalur Kereta Api), Sekretariat Negara, Jakarta, Indonesia, 2012.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development