Phytoremediation by Echinodorus palaefolius to Reduce Nitrogen and Phosphate Waste of Intensive Culture Anguilla bicolor in Recirculation Aquaculture Systems

Hany Handajani, - Widanarni, Tatag Budiardi, Mia Setiawati

Abstract


Increase in aquaculture activities leads to a negative impact on the environment. Thus, phytoremediation through recirculation aquaculture system becomes one effort that can be applied. The study aimed to evaluate the administration of Echinodorus palaefolius (water jasmine plant) through increasing the capacity of plants as phytoremediators in reducing the waste of intensive culture eel.  This study used a completely randomized design with three treatments of E. palaefolius density and repeated 3 times, as treatments were 1.04 g L-1 (Ep1), 2.08 g L-1 (Ep2), and 3.13 g L-1 (Ep3). The initial average eel weight was 8.3 ± 0.13 g, with a stocking density of 4 g L-1. The results showed a significant difference in the effect of E. palaefolius density on nutrient removal efficiency, as well as performance on eel and plant growth. The highest efficiency of nutrient removal in E. palaefolius with a density of 2.08 g L-1, nitrite (49.65 ± 4.52) %, nitrate (59.62 ± 1.89) %, phosphate (60.88 ± 1. 03) %, and TAN (46.03 ± 0.63) %. At E. palaefolius density 2.08 g L-1 produced eel specific growth rates (0.99 ± 0.02) % lowest feed conversion (1.97 ± 0.03), and highest increase of E. palaefolius biomass (262, 33 ± 2.60 g with daily growth 4.37 ± 0.43 g day-1). Thus, it can be concluded that the density of E. palaefolius 2.08 g L-1 produces the best efficiency in removing nutrients, the growth performance of eels and plants.


Keywords


Eel culture; nutrient removal efficiency; RAS; water jasmine plant; wastewater.

Full Text:

PDF

References


[KKP] Kementerian Kelautan dan Perikanan. 2018. Fishery Statistics Data in 2016. KKP RI. 75 p.

[FAO] Food Agricultural Organization. 2018. FAO Yearbook, Fishery and Aquaculture Statistic. 108 p.

[KKP] Kementerian Kelautan dan Perikanan. 2017. Marine and Fishery Statistics Data in 2014. KKP RI. 63 p.

Avnimelech Y. 2006. Bio-filters: The need for an new comprehensive approach. Aquacult Eng. 34: 172–178.

Van Rijn J. 2012. Waste treatment in recirculating aquaculture systems. Aquacult Eng. 53:49–56

Effendi H, Utomo BA, Darmawangsa GM, Sulaeman N. 2015. Combination of water spinach (Ipomoea aquatica) and bacteria for freshwater crayfish red claw (Cherax quadricarinatus) culture wastewater treatment in aquaponic system. J of Adv Biol. 6(3): 1072-1078.

Suzuki Y, Maruyama T, Numata H, Sato H, Asakawa M. 2003. Performance of a closed recirculating system with foam separation, nitrification and denitrification units for intensive culture of eel: towards zero emission. Aquacutl Eng. 29:165–182

Badiola M, Mendiola, D, Bostock J. 2012. Recirculating Aquaculture Systems (RAS) analysis: Main issues on management and future challenges. Aquaculture Engineering. 51 p. 26-32.

Paz-Alberto AM, Sigua GC. 2013. Phytoremediation: a green technology to remove enviromental pollutans. American J Climt Change. 2:71-86.

Amalia F, Nirmala K, Harris E, Widiyanto T. 2014. Kemampuan Lemna (Lemna Perpusilla Torr.) Sebagai Fitoremediator Untuk Menyerap Limbah Nitrogen Dalam Budidaya Ikan Lele (Clarias Gariepinus) Di Sistem Resirkulasi. J Limn. 21 (2) : 185-192.

Endut A, Jusoh A, Ali N, Nik WBW. 2011. Nutrient removal from aquaculture wastewater by vegetable production in aquaponic recirculation System. Desal Wat Treat. 32:422-430.

Delis PC, Effendi H, Krisanti M, Hariyadi S. 2015. Treatment of aquaculture wastewater using Vetiveria zizanioides (Liliopsida, Poaceae). AACL Bioflux. 8(4):616-625.

Caroline J, Moa GA. 2015. Fitoremediasi logam timbal (Pb) menggunakan tanaman melati air (Echinodorus palaefolius) pada limbah industri peleburan tembaga dan kuningan. Prosiding Seminar Nasional Sains dan Teknologi Terapan III 2015: 25-37.

Prasetya A, Prihutami P, Warisaura AD, Fahrurrozi M, Murti Petrus HTB. 2020. Characteristic of Hg Removal Using Zeolite Adsorption and Echinodorus palaefolius Phytoremediation in Subsurface Flow Constructed Wetland (SSF-CW) Model, Journal of Environmental Chemical Engineering. 8(3):103781

Handajani H, Widanarni, Setiawati M, Budiardi T, Sujono. 2018. Phytoremediation of Eel (Anguilla bicolor bicolor) rearing wastewater using amazon sword (Echinodorus amazonicus ) and water jasmine (Echinodorus palaefolius). Omni-Akua. 14(2): 43 – 51

[APHA] American Public Health Association. 2006. Standard Methods for The Examination of The Water and Wastewater, 22nd ed. American Public Health Association, Washington DC (US). 1195 p.

Kitadai Y, Kadowaki S. 2007. The growth, N, P uptake rates and photosyntetic rate of seaweeds cultured in coastal fish farm. Bull Fish Res Agen. 19: 149-154.

Boyd CE, Tucker CS. 2014. Handbook for aquaculture water quality. Craftmaster Printers:Inc Auburn Alabama USA. 563 p.

[KKP] Kementerian Kelautan dan Perikanan. 2011. Panduan Budidaya Ikan Sidat. Jakarta, Indonesia: Pusat penyuluhan kelautan dan perikanan, KKP RI. 59 p.

Luo M, Guan R, Li Z, Jin H. 2013. The effects of water temperature on the survival, feeding, and growth of the juveniles of Anguilla marmorata and Anguilla bicolor pacifica. Aquaculture. 401: 61–64.

Hastuti YP, Rusmana I, Widiyanto T. 2010. Profil tambak tradisional; tekstur tanah, total n-organik dan bakteri penghasilnya. Jurnal Akuakultur Indonesia. 9(2): 119-126

Tseng KF, Wu KL. 2004. The ammonia removal cycle for a submerged biofilter used in a recirculating eel culture system. Aquacult Eng. 31: 17–30.

Nuwansi KKT, Verma AK, Rathore G. 2019. Utilization of phytoremediated aquaculture wastewater for production of koi carp (Cyprinus carpio var. koi) and gotukola (Centella asiatica) in an aquaponics. Aquaculture 507: 361-364

Davidson J, Barrows FT, Kenney PB, Good C, Schroyer K, Steven T. Summerfelt. 2016. Effects of feeding a fishmeal-free versus a fishmeal-based diet on post-smolt Atlantic salmon Salmo salar performance, water quality, and waste production in recirculation aquaculture systems. Aquacult Eng. 74: 38–51.

Akinbille CO, Yusoff MS. 2012. Assessing water hyacinth (Eichhornia crassopes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment. Inter J Phytor. 14:201–211.

Jaeger C, Faucrd P, Tocgueville A, Nahon S, Aubin J. 2019. Mass balanced based LCA of a common carp-lettuce aquaponics system. Aquaculture Engineering 84:29-41

Jampeetong A, Brix H, Kantawanichkul S. 2012. Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiveria zizanioides). Aqua Bot. 97:10– 16.

Pedersen LF, Karin I, Suhr KI, Dalsgaard J, Pedersen PB, Arvin E. 2012. Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems. Aquaculture. 338: 237–245.

El-Shafai SA, El-Gohary FA, Naser FA, Van der Steen P, Gijzen HJ. 2007. Nitrogen recovery in an integrated system for wastewater treatment and tilapia production. Environmentalist. 27(2):287–302.

Suprayudi MA, Edriani G. Ekasari J. 2012. Evaluasi kualitas produk fermentasi berbagai bahan baku hasil samping agroindustri lokal : pengaruhnya terhadap kecernaan serta kinerja pertumbuhan juvenil ikan mas Quality evaluation of fermented products of various local agroindustrials by-products : JAI. 11(1):1–10.

Fazio F. 2019. Fish hematology analysis as an important tool of aquaculture: a review. Aquaculture. 500: 237-242.

Docan A, Cristea V, Dediu L, Mocanu M, Grecu I. 2011. The impact of level of the stocking density on the haematological parameters of rainbow trout (Oncorhynchus mykiss) reared in recirculating aquaculture systems. AACL Bioflux. 4(4): 536-541.

Well RMG, Baldwin J, Seymour RS, Christian K, Britain T. 2005. Blood cells function and hematology in two tropical freshwater fishes from Australia. Comparative Biochemistry and Physiology. 141: 87-93.

Talpur AD, Ikhwanuddin M. 2013. Azadirachta indica (neem) leaf dietary effects on the immunity response and disease resistance of Asian seabass, Lates calcarifer challenged with Vibrio harveyi. Fish and Shellfish Immunology. 34: 254-264.

Hadiroseyani Y, Sukenda, Surawidjaja EH, Utomo NBP, Affandi R. 2016. Efek pemberokan dalam media air dengan salinitas yang berbeda terhadap kondisi fisiologis belut, Monopterus albus (Zuiew, 1793). Jurnal Iktiologi Indonesia. 16(3): 325-336.

Royan F, Rejeki S, Haditomo AHC. 2014. Effect of salinity level on blood profile in nile tilapia Oreochromis niloticus. Journal of Aquaculture Management and Technology. 3: 109–117.

El-Khaldi ATF. 2010. Effect of different stress factors on some physiological parameters of Nile tilapia (Oreochromis niloticus). Saudi J of Biol Sci. 17: 241-246.

Naderi M, Jafaryan H, Jafaryan S. 2017. Effect of different stocking densities on hematological parameters and growth performance of great sturgeon (Huso huso Linnaeus, 1758) juveniles. Iranian J of Aqua Anim Health. 3(2): 1-10.

Ajani EK, Setufe SB, Oyebola OO. 2015. Effects of stocking density on haematological functions of juvenile African catfish (Clarias gariepinus) fed varying crude protein levels. African Journal of Food Science. 9(2): 65-69.

Talpur AD, Munir MB, Mary A, Hashim R. 2014. Dietary probiotics and prebiotics improved food acceptability, growth performance, hematology and immunological parameters and disease resistance against Aeromonas hydrophyla in snakehead (Channa striata) fingerlings. Aquaculture. 426-427: 14-20.

Barton BA. 2002. Stress in fishes: a diversity of responses with particular reference to changes in circulating corticosteroids. Integrative and Comparative Biology. 42: 517-525.

Tavares-Dias M, Moraes FR. 2007. Haematological and biochemical reference intervals for farmed Channel catfish. J Fish Biol. 71: 383–388.

Ren T, Koshio S, Teshima SI, Alam S, Panganiban A, Moe YY, Kojima T, Tokumitsu H. 2005. Optimum dietary level of L-ascorbic acid for Japanese eel Anguilla japonica. J World Aquacult Soc. 36: 437–443.

Fang Y., Babourina O., Rengel Z., Yang X. dan Pu P.M., 2007. Ammonium and nitrate uptake by the floating plant Landoltia punctata. Ann of Bot. 99(2): 365–370.

Zhao Z, Shi H, Liu Y, Zhao H, Su H, Wang M, Zhao Y. 2014. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater. Bioresource Technology. 167: 383-389.

Brix H, Jensen KD, Lorenze B. 2002. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. J of Experimt Bot. 53(379): 2441-2450.

Carvalho PN, Basto MCP, Almeida CMR, Brix H. 2014. A review of plant–pharmaceutical interactions: from uptake and effects in crop plants to phytoremediation in constructed wetlands. Environmental Science and Pollution Ressearch 21, 11729–11763.




DOI: http://dx.doi.org/10.18517/ijaseit.11.2.9521

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development