Some Considerations and a Benchmark Related to the CNF Property of the Koczy-Hirota Fuzzy Rule Interpolation

Maen Alzubi, Szilveszter Kovacs


The goal of this paper is twofold. Once to highlight some basic problematic properties of the KH Fuzzy Rule Interpolation through examples, secondly to set up a brief Benchmark set of Examples, which is suitable for testing other Fuzzy Rule Interpolation (FRI) methods against these ill conditions. Fuzzy Rule Interpolation methods were originally proposed to handle the situation of missing fuzzy rules (sparse rule-bases) and to reduce the decision complexity. Fuzzy Rule Interpolation is an important technique for implementing inference with sparse fuzzy rule-bases. Even if a given observation has no overlap with the antecedent of any rule from the rule-base, FRI may still conclude a conclusion. The first FRI method was the Koczy and Hirota proposed "Linear Interpolation", which was later renamed to "KH Fuzzy Interpolation" by the followers. There are several conditions and criteria have been suggested for unifying the common requirements an FRI methods have to satisfy. One of the most common one is the demand for a convex and normal fuzzy (CNF) conclusion, if all the rule antecedents and consequents are CNF sets. The KH FRI is the one, which cannot fulfill this condition. This paper is focusing on the conditions, where the KH FRI fails the demand for the CNF conclusion. By setting up some CNF rule examples, the paper also defines a Benchmark, in which other FRI methods can be tested if they can produce CNF conclusion where the KH FRI fails.


sparse fuzzy rule-bases; fuzzy interpolation techniques; KH FRI; CNF property; normality benchmark examples.

Full Text:



E. H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International journal of man-machine studies, vol. 7, no. 1, pp. 1–13, 1975. doi:10.1016/S0020-7373(75)80002-2.

T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE transactions on systems, man, and cybernetics, no.1, pp.116–132, 1985. doi: 10.1109/TSMC.1985.6313399.

M. Mizumoto, H.-J. Zimmermann, Comparison of fuzzy reasoning methods, Fuzzy sets and systems, vol. 8, no. 3, pp. 253–283, 1982. doi:10.1016/S0165-0114(82)80004-3.

E. Sanchez, L. A. Zadeh, Approximate reasoning in intelligent systems, decision and control, Elsevier, 2014. doi:10.1016/C2009-0-06816-0.

L. T. Koczy, J. Botzheim, T. D. Gedeon, Fuzzy models and interpolation, in: Forging New Frontiers: Fuzzy Pioneers I, Springer, 2007, pp. 111– 131. doi:10.1007/978-3-540-73182-5_6.

L. Koczy, K. Hirota, Approximate reasoning by linear rule interpolation and general approximation, International Journal of Approximate Reasoning, vol. 9, no. 3, pp. 197–225, 1993. doi:10.1016/0888-613X(93)90010-B.

L. Koczy, K. Hirota, Interpolative reasoning with insufficient evidence in sparse fuzzy rule bases, Information Sciences, vol. 71, no. 1-2, pp. 169–201, 1993. doi:10.1016/0020-0255(93)90070-3.

L. Koczy, K. Hirota, Ordering, distance and closeness of fuzzy sets, Fuzzy sets and systems, vol. 59, no. 3, pp. 281–293, 1993. doi:10.1016/0165-0114(93)90473-U.

L. T. Koczy, K. Hirota, Size reduction by interpolation in fuzzy rule bases, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 27, no. 1, pp. 14–25, 1997. doi:10.1109/3477.552182.

L. T. Koczy, K. Hirota, T. D. Gedeon, Fuzzy rule interpolation by the conservation of relative fuzziness., JACIII, vol. 4, no. 1, pp. 95–101, 2000.

L. T. Koczy, K. Hirota, L. Muresan, Interpolation in hierarchical fuzzy rule bases, in: Fuzzy Systems, 2000. FUZZ IEEE 2000. The Ninth IEEE International Conference on, Vol. 1, IEEE, 2000, pp. 471–477. doi:10.1109/FUZZY.2000.838705.

G. Vass, L. Kalmar, L. Koczy, Extension of the fuzzy rule interpolation method, in: Proc. Int. Conf. Fuzzy Sets Theory Applications, 1992, pp.1–6.

D. Tikk, I. Joo, L. Koczy, P. Varlaki, B. Moser, T. D. Gedeon, Stability of interpolative fuzzy KH controllers, Fuzzy Sets and System, Vol. 125, No. 1, 2002, pp. 105–119. /10.1016/S0165-0114(00)00104-4.

D. Tikk, P. Baranyi, Comprehensive analysis of a new fuzzy rule interpolation method, IEEE Transactions on Fuzzy Systems, Vol. 8, No. 3, 2000, pp. 281–296. doi: 10.1109/91.855917.

Z. C. Johanyak, S. Kovacs, Survey on various interpolation based fuzzy reasoning methods, Production Systems and Information Engineering, Vol. 3, No. 1, 2006, pp. 39–56.URL 2b7dfbcdd41f9c65d5d3f7a9f7fbcb5b403b.pdf?_ga=2.132636170.589400497.1550018135-865318992.1549928604

L. Koczy, S. Kovacs, Shape of the fuzzy conclusion generated by linear interpolation in trapezoidal fuzzy rule bases, in: Proceedings of the 2nd European Congress on Intelligent Techniques and Soft Computing, Aachen, 1994, pp. 1666–1670.

L. T. Koczy, S. Kovacs, The convexity and piecewise linearity of the fuzzy conclusion generated by linear fuzzy rule interpolation, J. BUSEFAL, vol. 60, pp. 23–29, 1994. URL papers/

Z. C. Johanyak, D. Tikk, S. Kovacs, K. W. Wong, Fuzzy rule interpolation matlab toolbox-FRI toolbox, IEEE (2006) 351–357doi:10.1109/ FUZZY.2006.1681736.

Z. Johanyak, FRI matlab toolbox website (2013). URL

W.-H. Hsiao, S.-M. Chen, C.-H. Lee, A new interpolative reasoning method in sparse rule-based systems, Fuzzy Sets and Systems, vol. 93, no. 1, pp. 17–22, 1998. doi:10.1016/S0165-0114(96)00190-X.

S. Yan, M. Mizumoto, W. Z. Qiao, Reasoning conditions on koczy’s interpolative reasoning method in sparse fuzzy rule bases, Fuzzy Sets and Systems, vol. 75, no. 1, pp. 63–71, 1995. doi:10.1016/0165-0114(94)00337-7.

D. Tikk, Z. Csaba Johanyak, S. Kovacs, K. W. Wong, Fuzzy rule interpolation and extrapolation techniques: Criteria and evaluation guidelines, Journal of Advanced Computational Intelligence and Intelligent Informatics, vol. 15, no. 3, pp. 254–263, 2011. URL

S. Jenei, Interpolation and extrapolation of fuzzy quantities revisited–an axiomatic approach, Soft Computing, vol. 5, no. 3, pp. 179–193, 2001. doi:10. 1007/s005000100080.

M. Azubi, Z. C. Johanyak, S. Kovacs, “Fuzzy rule interpolation methods and FRI toolboxâ€, Journal of Theoretical and Applied

Information Technology, vol. 96, no. 21, pp. 7227–7244, 2018.

M. Azubi, S. Kovacs, “Investigating the piece-wise linearity and benchmark related to koczy-hirota fuzzy linear interpolationâ€, Journal of Theoretical and Applied Information Technology, vol. 97, no. 11, pp. 3098–3111, 2019.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development