### A New Feature Extraction Algorithm to Extract Differentiate Information and Improve KNN-based Model Accuracy on Aquaculture Dataset

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

Ruslisan, N. H. Kalam, A. C. Dwininta, M. H. Habibi, E. T. Rahayu, N. Dewi, E. E. Henny, and W. Widyatmanti, â€œWater quality assessment using remote sensing and GIS for in-shore marine environment suitability,â€ Aquacultura Indonesiana, vol. 17, pp. 46-53, 2016.

D. Yuswantoro, O. Natan, A. N. Angga, A. I. Gunawan, Taufiqurrahman, B. S. B. Dewantara, A. Kurniawan, â€œFuzzy logic-based control system for dissolved oxygen control on indoor shrimp cultivation,â€ in Proc. International Electronics Symposium on Engineering Technology and Applications (IES-ETA), 2018, p. 37.

M. Muslim, M. Fitrani, and A. M. Afrianto, â€œThe effect of water temperature on incubation period, hatching rate, normalities of the larvae and survival rate of snakehead fish channa striata,â€ Aquacultura Indonesiana, vol. 19, pp. 90-94, 2018.

Djumanto, Ustadi, Rustadi, and B. Triyatno, â€œUtilization of Wastewater from Vannamei Shrimp Pond for Rearing Milkfish in Keburuhan Coast Purworejo Sub-District,â€ Aquacultura Indonesiana, vol. 19 (1), pp. 38-46, 2018.

D. Ayon, â€œMachine Learning Algorithms: A Review,â€ International Journal of Computer Science and Information Technologies, vol. 7 (3), pp. 1174-1179, 2016.

M. Khadr and M. Elshemy, â€œData-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt,â€ Ain Shams Engineering Journal, vol. 8, pp. 549-557, 2016.

L. Xu and S. Liu, â€œStudy of short-term water quality prediction model based on wavelet neural network,â€ Mathematical and Computer Modelling, vol. 58, pp. 807â€“813, 2013.

G. Tan, J. Yan, C. Gao, and S. Yang, â€œPrediction of water quality time series data based on least squares support vector machine,â€ in Proc. International Conference on Advances in Computational Modeling and Simulation, 2012, p. 1194.

C. Deng, Y. Gao, J. Gu, X. Miao, and S. Li, â€œResearch on the growth model of aquaculture organisms based on neural network expert system,â€ in Proc. 6th International Conference on Natural Computation, 2010, p. 1812.

I. Ahmad, M. Basheri, M. J. Iqbal and A. Rahim, â€œPerformance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection,â€ IEEE Access, vol. 6, pp. 33789-33795, 2018.

D. Banik, A. Ekbal and P. Bhattacharyya, â€œMachine Learning Based Optimized Pruning Approach for Decoding in Statistical Machine Translation,â€ IEEE Access, vol. 7, pp. 1736-1751, 2019.

B.S.B. Dewantara and J. Miura, "Estimating Head Orientation using a Combination of Multiple Cues", IEICE Trans. on Information and Systems, vol. E99-D, no. 6, pp. 1603-1613, 2016.

F. Zhao and Q. Tang, â€œA KNN Learning Algorithm for Collusion-Resistant Spectrum Auction in Small Cell Networks,â€ IEEE Access, vol. 6, pp. 45796-45803, 2018.

A. Rojas-DomÃnguez, L. C. Padierna, J. M. Carpio Valadez, H. J. Puga-Soberanes and H. J. Fraire, â€œOptimal Hyper-Parameter Tuning of SVM Classifiers With Application to Medical Diagnosis,â€ IEEE Access, vol. 6, pp. 7164-7176, 2018.

J. Tong, J. Xi, Q. Guo and Y. Yu, â€œLow-complexity cross-validation design of a linear estimator,â€ Electronics Letters, vol. 53, no. 18, pp. 1252-1254, 2017.

D. M. W. Powers, â€œEvaluation: From Precision, Recall and F-Measure to ROC, Informedness, Markedness & Correlation,â€ Journal of Machine Learning Technologies, vol. 2, no. 1, pp. 37â€“63, 2011.

B. N. Li, Q. Yu, R. Wang, K. Xiang, M. Wang and X. Li, â€œBlock Principal Component Analysis With Nongreedy L1-Norm Maximization,â€ IEEE Transactions on Cybernetics, vol. 46, no. 11, pp. 2543-2547, 2016.

M. Å avc, V. Glaser, J. Kranjec, I. Cikajlo, Z. MatjaÄiÄ and A. Holobar, â€œComparison of Convolutive Kernel Compensation and Non-Negative Matrix Factorization of Surface Electromyograms,â€ IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 26, no. 10, pp. 1935-1944, 2018.

N. Halko, P. G. Martinsson, and J. A. Tropp, â€œFinding structure with randomness: Stochastic algorithms for constructing approximate matrix decompositions,â€ Society for Industrial and Applied Mathematics, vol. 53, pp. 217-288, 2011.

T. Yokota, N. Lee and A. Cichocki, â€œRobust Multilinear Tensor Rank Estimation Using Higher Order Singular Value Decomposition and Information Criteria,â€ IEEE Transactions on Signal Processing, vol. 65, no. 5, pp. 1196-1206, 2017.

DOI: http://dx.doi.org/10.18517/ijaseit.9.3.8041

### Refbacks

Published by INSIGHT - Indonesian Society for Knowledge and Human Development