Wi-Fi Indoor Positioning Fingerprint Health Analysis for a Large Scale Deployment

KS Yeo, A Ting, SC Ng, D Chieng, N Anas


Indoor positioning systems (IPS) have witnessed continuous improvements over the years. However, large scale commercial deployments remain elusive due to various factors such as high deployment cost and/or lacked of market drivers. Among the state of the art indoor positioning approaches, the Wi-Fi fingerprinting technique in particular, is gaining a lot of attention due its ease of deployment. This is largely due to widespread deployment of WiFi infrastructure and its availability in all existing mobile devices. Although WiFi fingerprinting approach is relatively low cost and fast to deploy, the accuracy of the system tends to deteriorate over time due to WiFi access points (APs) being removed and shifted. In this paper, we carried out a study on such deterioration, which we refer to as fingerprint health analysis on a 2 million square feet shopping mall in South of Kuala Lumpur, Malaysia. We focus our study on APs removal using the actual data collected from the premise. The study reveals the following findings: 1) Based on per location pin analysis, ~50% of APs belong to the mall operator which is a preferred group of APs for fingerprinting. For some location however, the number of operator-managed APs are too few for fingerprinting positioning approach. 2) To maintain mean error distance of ~5 meter, up to 80% of the APs can be removed using the selected positioning algorithms at some locations. At some other locations however, the accuracy will exceed 5m upon >20% of APs being removed. 3) On average, around 40% - 60% of the APs can be removed in random manner in order to maintain the accuracy of ~5m.


indoor location positioning; fingerprint; Wi-Fi

Full Text:



“Indoor Location in Retail: Where Is the Money? | ABI Research.†[Online]. Available: https://www.abiresearch.com/market-research/product/1013925-indoor-location-in-retail-where-is-the-mon/. [Accessed: 23-Apr-2018].

A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location: challenges faced in developing techniques for accurate wireless location information,†IEEE Signal Process. Mag., vol. 22, no. 4, pp. 24–40, Jul. 2005.

P. Bahl and V. N. Padmanabhan, “RADAR: an in-building RF-based user location and tracking system,†in Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064), 2000, vol. 2, pp. 775–784 vol.2.

A. P. Rahmadini, P. Kristalina, and A. Sudarsono, “Optimization of Fingerprint Indoor Localization System for Multiple Object Tracking Based on Iterated Weighting Constant - KNN Method,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 3, pp. 998–1007, Jun. 2018.

R. D. Ainul, P. Kristalina, and A. Sudarsono, “Modified Iterated Extended Kalman Filter for Mobile Cooperative Tracking System,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 3, pp. 980–992, 2017.

S. Liu, Y. Jiang, and A. Striegel, “Face-to-Face Proximity EstimationUsing Bluetooth On Smartphones,†IEEE Trans. Mob. Comput., vol. 13, no. 4, pp. 811–823, Apr. 2014.

X. Zhao, Z. Xiao, A. Markham, N. Trigoni, and Y. Ren, “Does BTLE measure up against WiFi? A comparison of indoor location performance,†in European Wireless 2014; 20th European Wireless Conference, 2014, pp. 1–6.

Y. Chen, J. Liu, D. Lymberopoulos, and B. Priyantha, “FM-based Indoor Localization,†Microsoft Res., Jun. 2012.

S. Yoon, K. Lee, and I. Rhee, “FM-based Indoor Localization via Automatic Fingerprint DB Construction and Matching,†in Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, New York, NY, USA, 2013, pp. 207–220.

L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “LANDMARC: indoor location sensing using active RFID,†in Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)., 2003, pp. 407–415.

J. Wang and D. Katabi, “Dude, Where’s My Card?: RFID Positioning That Works with Multipath and Non-line of Sight,†in Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, New York, NY, USA, 2013, pp. 51–62.

L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram: Real-time Tracking of Mobile RFID Tags to High Precision Using COTS Devices,†in Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 2014, pp. 237–248.

W. Zhuo, B. Zhang, S. H. G. Chan, and E. Y. Chang, “Error Modeling and Estimation Fusion for Indoor Localization,†in 2012 IEEE International Conference on Multimedia and Expo, 2012, pp. 741–746.

Z. Sun, A. Purohit, K. Chen, S. Pan, T. Pering, and P. Zhang, “PANDAA: a physical arrangement detection technique for networked devices through ambient-sound awareness,†in Proc. ACM UbiComp, 2011, pp. 425–434.

W. Huang et al., “Shake and walk: Acoustic direction finding and fine-grained indoor localization using smartphones,†in IEEE INFOCOM 2014 - IEEE Conference on Computer Communications, 2014, pp. 370–378.

Y.-S. Kuo, P. Pannuto, K.-J. Hsiao, and P. Dutta, “Luxapose: Indoor Positioning with Mobile Phones and Visible Light,†in Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, New York, NY, USA, 2014, pp. 447–458.

Z. Wang, Z. Yang, J. Zhang, C. Huang, and Q. Zhang, “Wearables Can Afford: Light-weight Indoor Positioning with Visible Light (Best Paper Candidate, Best Video Presentation Award),†Microsoft Res., May 2015.

J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman, “Indoor Location Sensing Using Geo-magnetism,†in Proceedings of the 9th International Conference on Mobile Systems, Applications, and Services, New York, NY, USA, 2011, pp. 141–154.

H. Xie, T. Gu, X. Tao, H. Ye, and J. Lv, “MaLoc: A Practical Magnetic Fingerprinting Approach to Indoor Localization Using Smartphones,†in Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, NY, USA, 2014, pp. 243–253.

J. Poushter, “Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies,†Pew Research Center’s Global Attitudes Project, 22-Feb-2016. .

C. Gentile, N. Alsindi, R. Raulefs, and C. Teolis, Geolocation Techniques: Principles and Applications. Springer Science & Business Media, 2012.

S. He, W. Lin, and S. H. G. Chan, “Indoor Localization and Automatic Fingerprint Update with Altered AP Signals,†IEEE Trans. Mob. Comput., vol. 16, no. 7, pp. 1897–1910, Jul. 2017.

E. Laitinen and E. S. Lohan, “On the Choice of Access Point Selection Criterion and Other Position Estimation Characteristics for WLAN-Based Indoor Positioning,†Sensors, vol. 16, no. 5, May 2016.

S. Eisa, J. Peixoto, F. Meneses, and A. Moreira, “Removing useless APs and fingerprints from WiFi indoor positioning radio maps,†in International Conference on Indoor Positioning and Indoor Navigation, 2013, pp. 1–7.

S. Meyer, T. Vaupel, and S. Haimerl, “Wi-Fi coverage and propagation for localization purposes in permanently changing urban areas,†in IADIS Multi Conference on Computer Science and Information Systems, MCCSIS 2008, 2008, pp. 11–20.

T. Vaupel, J. Seitz, F. Kiefer, S. Haimerl, and J. Thielecke, “Wi-Fi positioning: System considerations and device calibration,†in 2010 International Conference on Indoor Positioning and Indoor Navigation, 2010, pp. 1–7.

“Correlation coefficients - MATLAB corrcoef.†[Online]. Available: https://www.mathworks.com/help/matlab/ref/corrcoef.html. [Accessed: 08-May-2018].

A. Gelman, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, and D. B. Rubin, Bayesian Data Analysis, Third Edition. CRC Press, 2013.

“MLE vs MAP: the connection between Maximum Likelihood and Maximum A Posteriori Estimation - Agustinus Kristiadi’s Blog.†[Online]. Available: http://wiseodd.github.io/techblog/2017/01/01/mle-vs-map/. [Accessed: 12-Aug-2018].

H. Rajaguru and S. K. Prabhakar, KNN Classifier and K-Means Clustering for Robust Classification of Epilepsy from EEG Signals. A Detailed Analysis. diplom.de, 2017.

DOI: http://dx.doi.org/10.18517/ijaseit.8.4-2.6837


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development