Potential Areas of Land Subsidence in Karst Landscape: Case Study in Ponjong and Semanu District, Gunungkidul Regency, Yogyakarta, Indonesia

Astrid Damayanti, Fitri Riadini, Fajar Dwi Pamungkas

Abstract


Sinkhole is a depression of the land surface, causing hazardous effects on the karst landscape. Land subsidence is a phenomenon of sinkhole formation due to karstification. Land subsidence associated with any of the existing evaporite-karst sinkholes Land subsidence is a gradual settling or sudden sinking of the Earth’s surface, which can be very dangerous as it relates to life on the surface and infrastructure planning. Ponjong and Semanu District, Gunungkidul Regency, are included in the Gunung Sewu Karst area, with landscapes highly influenced by the karstification process. Decision-makers need increasing attention to make assessments also mitigation on karst management. This study aims to determine the potential areas of land subsidence caused by natural factors in the karst landscape in the Ponjong and Semanu District, Gunungkidul Regency using integrated geospatial technology. For making some maps, we initially need a process from SRTM. Land Surface Temperature map, The Normalized Difference Vegetation Index (NDVI) map, slope map, and geological map are integrated into a GIS platform using the scoring and matrix then the overlay method. Descriptive spatial analysis of potential subsidence area is based on land surface temperature, vegetation factor, slope inclination, and geological formation related to altitude. The results show that approximately 80 percent of Ponjong and Semanu District places are high potential land subsidence areas. Policymakers can use this distribution of the potential regions of land subsidence as essential spatial planning in Gunungkidul Karst, especially in Ponjong and Semanu district.

Keywords


Gunungkidul Karst; land subsidence; potential areas

Full Text:

PDF

References


T. Waltham, F. G. Bell, M. Culshaw, Sinkholes, and Subsidence: Karst and Cavernous Rocks in Engineering Construction, Berlin, Germany: Springer-Praxis in Geophysical Science, 2005.

A. Witze, “Florida Forecast Sinkhole Burden,” Nature International Weekly Journal of Science. vol.504. pp. 197, 2013.

D. J. Weary, “The Cost of Karst Subsidence and Sinkhole Collapse in The United States Compared with Other Natural Hazards,” in 14th Sinkhole Conference, 2015.

D. L. Galloway, G. Erkens, E. L. Kunlansky, and J. C. Rowland, “Preface: Land Subsidence Processes” Hydrology Journal 24:547-55, pp.549, 2016.

(2002) A lexicon of Cave and Karst Terminology with Special Reference to Environmental Karst Hydrology (2002 edition), U.S. EPA [Online], Available: https://cfpub.epa.gov/ncea/risk/era/recordisplay.cfm?deid=54964.

S. B. Kusumayudha, Mengenal Hidrogeologi Karst. Pusat Studi Karst Lembaga Penelitian dan Pengabdian Kepada Massyarakat UPN “Veteran”Yogyakarta.Yogyakarta, 2004.

A. D. Duerr, “Types of Secondary Porosity of Carbonate Rocks in Injection and Test Wells in Southern Peninsular Florida,” U.S. Geological Survey Water-Resource Investigations Report, No. 94-4013. pp.7, 1995.

R M. Delle, A. Federico, and M. Parise, “Sinkhole Genesis and Evolution in Apulia and Their Interrelations with The Anthropogenic Environment,” Natural Hazard Earth System, vol.4, pp.3, 2004.

(2019). National Ocean Service website. [Online]. Available: https://oceanservice.noaa.gov/facts/subsidence.html.

Y. Lixin, Z. Fang, X. He, C. Shijie, W. Wei, and Q. Yi, “Land subsidence in Tianjin, China,” Environmental Earth Sciences, vol. 62, pp. 1151-1161, 2011.

D. L. Galloway, T. J. Burbey, “Review: Regional Land Subsidence Accompanying Groundwater Extraction, Hydrogeology Journal, vol. 19, pp. 1459-1486, 2011.

F. B. Barends, F. J. Brouwer, F. H. Schoder, “Land Subsidence,” IAHS, pp. 1-11, 1995.

D. Ford and P. D. Wiliams, Karst Hydrogeology and Geomorphology. John Wiley & Sons Ltd, Chichester, West Sussex, 2017.

(2017) USGS website. [Online]. Available: http://water.usgs.gov/edu/sinkholes.html.

D. F. N. Sari, A. Damayanti and Rokhmatullah, “Identify Karstification of Doline Characteristic” (Identifikasi Karstifikasi pada Karakteristik Dolina Studi Kasus: Kecamatan Ponjong dan Kecamatan Semanu), Seminar Nasional Geomatika, 2018.

R. W. V. Bemmelen, The Geology of Indonesia. Netherland: Martinus Nijhoff Publisher, 1949, vol 1A.

M. Struebig, T. Kingston, A. Zubaid, St. J. Rossiter “Conservation Importance of Limestone Karst Outcrops for Palaeotropical Bats in a Fragmented Landscape, Biological Conservation, vol. 142, pp. 2089-2096, 2009

Haryono, E., Adji, Tjahyo Nugroho. Bahan Ajar Geomorfologi dan Hidrologi Karst, Fakultas Yogyakarta, Indonesia: Geografi UGM, 2004.

D. P. E. Putra, A. Setianto, K. Keokhampui, and H. Fukuoka, “Land Subsidence Risk Assessment in Karst Region, Case Study: Rongkop, Gunung Kidul,” Mittelungenzur Ingenieurgeologi e und Remote Sensing of Environment and Geographic Information System, Faculty of Geography University of Gadjah Mada, 2015.

J. A. H. Oates, “Lime and Limestone: Chemistry and Technology,” Reviews in Engineering Geology, vol. II, pp. 271-303, 1998.

B. T. Willige, H. A. Malek, A. Charif, F. E. Bchari, and M. Chaïbi, “Remote Sensing and GIS Contribution to the Investigation of Karst Landscapes in NW-Morocco,” Geosciences, vol. 4, pp. 50–72, 2014.

Y. Deng, S. Wang, X. Bai, Y. Tian, L. Wu, J. Xiao, F. Chen, and Q. Qian, “Relationship Among Land Surface Temperature and LUCC, NDVI in Typical Karst Area,” Scientific Report, Article number 641, 2018.

J. S. Wilson, M. Clay, E. Martin, D. Stuckey, and K. Vedder-Risch, “Evaluating environmental influences of zoning in urban ecosystems with remote sensing,” Remote Sensing of Environment, vol. 86, pp. 303–321, 2003.

S. Mantey, N. D. Tagoe, and C. A. Abaidoo, “Estimation of Land Surface Temperature and Vegetation Abundance Relationship – A Case Study,” 3rd UMaT Biennial International Mining & Mineral Conference, 2015.

S. Youneszadeh, N. Amiri, and P. Pilesjo, “The Effect of Land Use Change on Land Surface Temperature in The Netherlands,” International Conference on Sensors & Models In Remote Sensing & Photogrammetry, vol. XL-1/W5, 2015

Y. J. Kim, B. H. Nam, and H. Youn, “Sinkhole Detection and Characterization Using LiDAR-Derived DEM with Logistic Regression,” Remote Sensing Article, 2019.

Surono, I. Sudarno & B Toha. Peta geologi lembar Surakarta-Giritontro, Jawa Geological map of the Surakarta-Giritontro quadrangle, Jawa, Peta geologi bersistem Indonesia; lembar 1408-3 & 1407-6 Bandung: Pusat Penelitian dan Pengembangan Geologi , 1992.

Zuidam, Terrain Analysis, and Classification Using Aerial Photographs: A Geomorphological Approach, Enschede, the Netherlands: International Institute for Aerial Survey and Earth Sciences (ITC), 1979, vol. 3.

Ardiansyah, Remote Sensing and Image Processing Using ENVI 5.1 and ENVI LiDAR (Pengolahan Citra Penginderaan Jauh Menggunakan ENVI 5.1 dan ENVI LiDAR, Jakarta, Indonesia: PT.Lab SIG Inderaja Slim. Jakarta, 2015.

Noor, D, Pengantar Geologi. Program Teknik Studi Geologi,

Fakultas Teknik Universitas Pakuan, Bogor. 2009.




DOI: http://dx.doi.org/10.18517/ijaseit.11.2.6754

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development