A New Approach to Model Parameter Determination of Self-Potential Data using Memory-based Hybrid Dragonfly Algorithm

Irwansyah Ramadhani, Sungkono Sungkono


A new approach based on global optimization technique is applied to invert Self-Potential (SP) data which is a highly nonlinear inversion problem. This technique is called Memory-based Hybrid Dragonfly Algorithm (MHDA). This algorithm is proposed to balance out the high exploration behavior of Dragonfly Algorithm (DA), which causes a low convergence rate and often leads to the local optimum solution. MHDA was developed by adding internal memory and iterative level hybridization into DA which successfully balanced the exploration and exploitation behaviors of DA. In order to assess the performance of MHDA, it is firstly implemented to invert the single and multiple noises contaminated in synthetic SP data, which were caused by several simple geometries of buried anomalies: sphere and inclined sheet. MHDA is subsequently implemented to invert the field SP data for several cases: buried metallic drum, landslide, and Lumpur Sidoarjo (LUSI) embankment anomalies. As a stochastic method, MHDA is able to provide Posterior Distribution Model (PDM), which contains possible solutions of the SP data inversion. PDM is obtained from the exploration behavior of MHDA. All accepted models as PDM have a lower misfit value than the specified tolerance value of the objective function in the inversion process. In this research, solutions of the synthetic and field SP data inversions are estimated by the median value of PDM. Furthermore, the uncertainty value of obtained solutions can be estimated by the standard deviation value of PDM. The inversion results of synthetic and field SP data show that MHDA is able to estimate the solutions and the uncertainty values of solutions well. It indicates that MHDA is a good and an innovative technique to be implemented in solving the SP data inversion problem.


memory-based hybrid dragonfly algorithm; posterior distribution model; model uncertainty; self-potential.

Full Text:



M. S. Roudsari and A. Beitollahi, “Forward modelling and inversion of self-potential anomalies caused by 2D inclined sheets,†Exploration Geophysics., vol. 44, no. 3, pp. 176-184, 2013.

P. Kearey, M. Brooks, and I. Hill, An introduction to geophysical exploration, 3rd ed., Malden, MA: Blackwell Science, 2002.

W. M. Telford, L. P. Geldart, and R. E. Sheriff, Applied Geophysics, 2 ed., Cambridge: Cambridge University Press, 1990.

J. C. Wynn and S. I. Sherwood, “The Self-Potential (SP) Method: an Inexpensive Reconnaissance and Archaeological Mapping Tool,†J. Field Archaeol., vol. 11, no. 2, pp. 195–204, Jan. 1984.

M. G. Drahor, “Application of the self-potential method to archaeological prospection: some case histories,†Archaeol. Prospect., vol. 11, no. 2, hlm. 77–105, Apr. 2004.

S. A. Sultan, S. A. Mansour, F. M. Santos, and A. S. Helaly, “Geophysical exploration for gold and associated minerals, case study: Wadi El Beida area, South Eastern Desert, Egypt,†J. Geophys. Eng., vol. 6, no. 4, pp. 345–356, Dec. 2009.

H. Ramazi, M. R. H. Nejad, and A. A. Firoozi, “Application of integrated geoelectrical methods in Khenadarreh (Arak, Iran) graphite deposit exploration,†J. Geol. Soc. India, vol. 74, no. 2, pp. 260–266, 2009.

Y. Kawada dan T. Kasaya, “Marine self-potential survey for exploring seafloor hydrothermal ore deposits,†Sci. Rep., vol. 7, no. 1, Dec 2017.

R. F. Corwin dan D. B. Hoover, “The self-potential method in geothermal exploration,†Geophysics, vol. 44, no. 2, pp. 226–245, 1979.

S. A. Mehanee, “Tracing of paleo-shear zones by self-potential data inversion: case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes,†Earth Planets Space, vol. 67, no. 1, pp. 14, 2015.

G. O. Emujakporue, “Self Potential Investigation of Contaminants in a Dumpsite, University of Port Harcourt, Nigeria,†World Sci. News, vol. 57, pp. 140–148, 2016.

P. Soupios and M. Karaoulis, “Application of Self-Potantial (SP) Method for Monitoring Contaminants Movement,†2015.

Sungkono and D. D. Warnana, “Black hole algorithm for determining model parameter in self-potential data,†J. Appl. Geophys., vol. 148, pp. 189–200, Jan. 2018.

D. Kušnirák, I. Dostál, R. Putiška, and A. Mojzeš, “Complex geophysical investigation of the Kapušany landslide (Eastern Slovakia),†Contrib. Geophys. Geod., vol. 46, no. 2, pp. 111–124, Jun. 2016.

A. Jardani, A. Revil, W. Barrash, A. Crespy, E. Rizzo, S. Straface, M. Cardiff, B. Malama, C. Miller, and T. Johnson, “Reconstruction of the Water Table from Self-Potential Data: A Bayesian Approach,†Ground Water, vol. 47, no. 2, pp. 213–227, Mar. 2009.

T. Goto, K. Kondo, R. Ito, K. Esaki, Y. Oouch, Y. Abe, and M. Tsujimura, “Implications of Self-Potential Distribution for Groundwater Flow System in a Nonvolcanic Mountain Slope,†Int. J. Geophys., vol. 2012, hlm. 1–10, 2012.

R. Di Maio, P. Rani, E. Piegari, and L. Milano, “Self-potential data inversion through a Genetic-Price algorithm,†Comput. Geosci., vol. 94, pp. 86–95, Sep. 2016.

H. M. El-Araby, “A new method for complete quantitative interpretation of self-potential anomalies,†J. Appl. Geophys., vol. 55, no. 3–4, pp. 211–224, Mar. 2004.

A. D. Candra, W. Srigutomo, Sungkono, and B. J. Santosa, “A complete quantitative analysis of self-potential anomaly using singular value decomposition algorithm,†in Proc. IEEE ICSIMA, 2014, p. 1–4.

M. Dehbashi and M. M. Asl, “Determining Parameters of Simple Geometric Shaped Self–potential Anomalies,†Indian J. Sci. Technol., vol. 7, no. 1, pp. 79–85, 2014.

K. Essa, S. Mehanee, and P. D. Smith, “A new inversion algorithm for estimating the best fitting parameters of some geometrically simple body to measured self-potential anomalies,†Explor. Geophys., vol. 39, no. 3, pp. 155-163, 2008.

G. A. Skianis, “The Self-Potential Anomaly Produced by a Subsurface Flow at the Contact of Two Horizontal Layers and Its Quantitative Interpretation,†Int. J. Geophys., vol. 2012, pp. 1–8, 2012.

R. Di Maio, E. Piegari, P. Rani, and A. Avella, “Self-Potential data inversion through the integration of spectral analysis and tomographic approaches,†Geophys. J. Int., vol. 206, no. 2, pp. 1204–1220, 2016.

G. Mauri, G. Williams-Jones, and G. Saracco, “MWTmat—application of multiscale wavelet tomography on potential fields,†Comput. Geosci., vol. 37, no. 11, pp. 1825–1835, 2011.

E. M. Abdelrahman, A. G. Hassaneen, and M. A. Hafez, “Interpretation of self-potential anomalies over two-dimensional plates by gradient analysis,†Pure Appl. Geophys., vol. 152, no. 4, pp. 773–780, 1998.

E. M. Abdelrahman, H. M. Elâ€Araby, A. G. Hassaneen, and M. A. Hafez, “New methods for shape and depth determinations from SP data,†GEOPHYSICS, vol. 68, no. 4, pp. 1202–1210, Jul. 2003.

E. M. Abdelrahman, K. S. Essa, E. R. Abo-Ezz, and K. S. Soliman, “Self-potential data interpretation using standard deviations of depths computed from moving-average residual anomalies,†Geophys. Prospect., vol. 54, no. 4, pp. 409–423, 2006.

E. M. Abdelrahman, T. M. El-Araby, and K. S. Essa, “Shape and depth determinations from second moving average residual self-potential anomalies,†J. Geophys. Eng., vol. 6, no. 1, pp. 43–52, Mar. 2009.

F. A. Monteiro Santos, “Inversion of self-potential of idealized bodies’ anomalies using particle swarm optimization,†Comput. Geosci., vol. 36, no. 9, pp. 1185–1190, Sep. 2010.

G. Göktürkler dan ç Balkaya, “Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms,†J. Geophys. Eng., vol. 9, no. 5, pp. 498–507, Oct. 2012.

S. P. Sharma and A. Biswas, “Interpretation of self-potential anomaly over a 2D inclined structure using very fast simulated-annealing global optimization — An insight about ambiguity,†GEOPHYSICS, vol. 78, no. 3, pp. WB3-WB15, May. 2013.

X. Li and M. Yin, “Application of Differential Evolution Algorithm on Self-Potential Data,†PLoS ONE, vol. 7, no. 12, pp. e51199, Dec. 2012.

K. S. Sree Ranjini and S. Murugan, “Memory based Hybrid Dragonfly Algorithm for numerical optimization problems,†Expert Syst. Appl., vol. 83, pp. 63–78, Oct. 2017.

B. B. Bhattacharya and N. Roy, “A note on the use of a nomogram for self-potential anomalies,†Geophys. Prospect., vol. 29, no. 1, pp. 102–107, 1981.

A. Biswas and S. P. Sharma, “Resolution of multiple sheet-type structures in self-potential measurement,†J. Earth Syst. Sci., vol. 123, no. 4, pp. 809–825, 2014.

S. Mirjalili, “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems,†Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, May. 2016.

I. Ramadhani, S. Sungkono, and H. Grandis, “Comparison of Particle Swarm Optimization, Genetic, and Dragonfly Algorithm to Invert Vertical Electrical Sounding,†in EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering, 2018.

M. K. Sen and P. L. Stoffa, Global optimization methods in geophysical inversion, Second edition. Cambridge, New York: Cambridge University Press, 2013.

J. L. Fernández Martínez, M. Z. Fernández Muñiz, and M. J. Tompkins, “On the topography of the cost functional in linear and nonlinear inverse problems,†GEOPHYSICS, vol. 77, no. 1, pp. 1–20, Jan. 2012.

J. L. F. Martínez, E. G. Gonzalo, Z. F. Muñiz, G. Mariethoz, and T. Mukerji, “Posterior Sampling using Particle Swarm Optimizers and Model Reduction Techniques:,†Int. J. Appl. Evol. Comput., vol. 1, no. 3, pp. 27–48, Jul. 2010.

Sungkono and B. J. Santosa, “Differential evolution adaptive metropolis sampling method to provide model uncertainty and model selection criteria to determine optimal model for Rayleigh wave dispersion,†Arab. J. Geosci., vol. 8, no. 9, pp. 7003–7023, Sep. 2015.

A. Biswas and S. P. Sharma, “Optimization of self-potential interpretation of 2-D inclined sheet-type structures based on very fast simulated annealing and analysis of ambiguity,†J. Appl. Geophys., vol. 105, pp. 235–247, Jun. 2014.

W. Srigutomo, E. Agustine, and M. H. Zen, “Quantitative Analysis of Self-Potential Anomaly: Derivative Analysis, Least-Squares Method and Non-Linear Inversion,†Indones. J. Phys., vol. 17, no. 2, pp. 49–55, 2006.

B. Ramadhany, S. Sungkono, A. Rohman, D. D. Warnana, and S. Lestari, “Comprehensive Analysis of Microtremor data to identify potential landslide (Study Case: KM23 Ponorogo-Trenggalek Road),†in EAGE-HAGI 1st Asia Pacific Meeting on Near Surface Geoscience and Engineering, 2018.

D. S. Agustawijaya and Sukandi, “The Stability Analysis of the Lusi Mud Volcano Embankment Dams using FEM with a Special Reference to the Dam Point P10. D,†Civ. Eng. Dimens., vol. 14, no. 2, pp. 100–109, 2012.

Sungkono, A. Husein, H. Prasetyo, A. S. Bahri, F. A. Monteiro Santos, and B. J. Santosa, “The VLF-EM imaging of potential collapse on the LUSI embankment,†J. Appl. Geophys., vol. 109, pp. 218–232, Oct. 2014.

A. Husein, B. J. Santosa, and A. S. Bahri, “Seepage Monitoring of an Embankment Dam Using Resistivity Method: A Case Study of LUSI Mud Volcano P.79 - P.82 Embankment,†Appl. Mech. Mater., vol. 771, pp. 213–217, Jul. 2015.

DOI: http://dx.doi.org/10.18517/ijaseit.9.5.6587


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development