The Pattern of EDTA-Blood Photo Spectrum in Ovarian Cancer Patients: A Novel Biomarker

- Ngadikun, Untung Widodo, - Tasmini, Heru Pradjatmo, Ahmad Hamim Sadewa, Kuncoro Asih Nugroho


One of the main causes of women’s cancer-related death is Epithelial Ovarian Cancer (EOC). A new spectrophotometric method was developed to determine a biomarker for EOC. This study aims to investigate the pattern of EDTA-blood photo spectrum in EOC patients. One ml blood was collected from sixty-six subjects (33 EOC patients, 33 healthy controls) by venipuncture, which then drawn into EDTA tubes for photo spectrum analysis. The t-test using programming in Matrix Laboratory (MATLAB) for Windows 7 tested the differences in ENBS and EBS parameters in the two groups and the parameters of EDTA-blood photo spectrum in two groups based on the energetics of non-biological systems (ENBS) and energetics of biological systems (EBS) approach. The statistical significance of p<0.01 was taken to evaluate the difference. The receivers operating characteristic (ROC) curves were applied to evaluate the effect of biomarkers on these parameters. The area under the ROC curve (AUC) is used to evaluate the biomarker with the correspondence interval (CI) of 95%. The t-test results indicate that the significant difference was observed between EOC patients and healthy controls only in parameter-1 of the parameters based on the ENBS approach. However, there were significant differences in all parameters based on the EBS approach. In a training dataset, the AUC values were 0.663, 0.704, 0.546, 0.611, 0.619, and 0.676 for ideal parameter-1 to 6 (IP1-6); and 0.886, 0.855, 0.765, 0.909, 0.897, and 0.789 for real parameter-1 to 6 (RP1-6). Sensitivity and specificity of IP1-6 = 48.5%, 42.4%, 24.2%, 57.6%,  84.8%, and 60.6%; and 100.0%, 100.0%, 97.0%, 66.7%, 39.4%,  and 72.7% respectively, at cut-off point 1.0E-12, -1.3E-06, 3.2E-01, 7.2E-11, -2.7E-05, and 4.5E+00 respectively; whereas sensitivity and specificity of  RP1-6 = 100.0%, 100.0%, 84.8%, 100.0%, 100.0%, and 93.9%; and 93.9%, 90.9%, 81.8%, 100.0%, 97.0%, and 81.8% respectively, at cut-off point 5.0E-04, 6.3E-04, -1.1E-03, 9.4E-03, -8.8E-03, and 9.8E-03 respectively. Thus, it could be concluded that parameters of the pattern of EDTA-blood photo spectrum based on the ENBS approach could be used to identify new biomarkers of EOC.


biomarker; EBS approach; EOC; the pattern of photo spectrum.

Full Text:



J. Krzystyniak, L. Ceppi, D. S. Dizon, and M. J.Birrer, Epithelial ovarian cancer: the molecular genetics of epithelial ovarian cancer. Annals of Oncology, vol. 27(Supplement 1), pp. i4–i10, Apr. 2016.

Berek J S, Crum C, and Friedlander M., Cancer of the ovary, fallopian tube, and peritoneum. Int J Gynecol Obstet, vol. 119 suppl2, pp. s118-s129, oct.2012.

M. F. Aziz, Gynecological cancer in Indonesia. J Gynecol Oncol, vol. 20(1), pp. 8-10, Marc.2009.

E. Kobayashi, Y. Ueda, S. Matsuzaki, T. Yokoyama, T. Kimura, K. Yoshino, M. Fujita, T. Kimura, and T. Enomoto, Biomarker for Screening, Diagnosis, and Monitoring of Ovarian Cancer.American Association for Cancer Research, vol. 12, pp. 1902-1912, Sept. 2012.

M. Felder, A. Kapur, J. Gonzalez-Bosquet, S. Horibata, J. Heintz, R. Albrecht, L. Fass, J. Kaur, K. Hu, H. Shojaei, R. J. Whelan, and M. S. Patankar, MUC16 (CA125): Tumor Biomarker to Cancer Therapy, a Work in Progress.Molecular Cancer, vol. 13, pp. 1-15, 2014.

S. Polterauer, C. Grimm, V. Seebacher, N. Concin, C. Marth, C. Tomovski, H. Husslein, H. Leipold, K. Hefler-frischmuth, C. Tempfer, A. Reinthaller, and L. Hefler,, Plasma fibrinogen levels and prognosis in patients with ovarian cancer: a multicenter study. Oncologist, vol. 14(10), pp. 979–85, Oct. 2009.

Kumta, G. Nayak, H. P. Kedilaya, and M. Shantaram, A Comparative Study of Erythrocyte Sedimentation Rate (ESR) Using Sodium Citrate and EDTA. International Journal of Pharmacy and Biological Sciences, vol. 1, pp. 393-396, Oct.-Des. 2011.

O. K. Baskurt, and H. J. Mesiselman, Erythrocyte Aggregation: Basic Aspect and Clinical Importance.Clinical Hemorheology and Microcirculation, 53, pp. 23–37, 2013.

S. P. Ballou, and I. Kushner, Laboratory Evaluation of Inflammation. In: W. N. Kelley, E. D. Jr. Harris, S. Ruddy, C.B. Sledge, editors. Textbook of Rheumatology, 4th ed, Philadelphia: W.B. Saunders Co., 1993.

E. Brahn, C.D. Scoville, Biochemical Markers of Disease Activity. In: H. Bird, J.S. Dixon, editors. Biochemical Aspects of Rheumatic Diseases. Vol. 2. London: Bailliere Tindall; 1988.

F. Tas, and K. Erturk, 2017. The elevated erythrocyte sedimentation rate is associated with metastatic disease and worse survival in patients with cutaneous malignant melanoma. Molecular and Clinical Oncology, vol. 7, pp. 1142-1146. Oct. 2017.

Ngadikun, â€Pengukuran Laju Endap Darah (Erythrocyte Sedimentation Rate) dengan Metode Spektrometri,†M. Bio. Med. thesis, Indonesia University, Jakarta, June 1998.

S.K. Hahl, and A. Kremling, A comparison of deterministic and stochastic modeling approaches for biochemical reaction systems: on fixed points, means, and modes. Front. Genet, vol. 7, pp. 157, Aug. 2016.

F. Farrokhyar, D. Reddy, R.W. Poolman, and M. Bhandari, why perform a priori sample size calculation? Can J surg, vol. 56, pp. 207-213 June. 2012.

I.J. Ford, Measures of thermodynamic irreversibility in deterministic and stochastic dynamics. New J. Phys., vol. 17, pp. 1-22, Aug. 2015.

A. C. Barato, and U. Seifert, Cost and Precision of Brownian Clocks. Physical Review X, vol. 6, pp. 041053-1 - 041053-14, Dec. 2016.

L.F. del Castillo, and P. Vera-Cruz, 2011. Thermodynamic formulation of living systems and their evolution. Journal of Modern Physics, vol.2, pp. 379-391, May 2011.

S. Huang, F. Li, J.X. Zhou, H. Qian, Processes on the emergent landscapes of biochemical reaction networks and heterogeneous cell population dynamics: differentiation in living matters. Journal of TheRoyal Society Interface, pp.1-35, June 2017

L. Ludemann, W. Grieger, R. Wurm, P. Wust, C. Zimmer, Glioma assessment using quantitativeblood volume maps generated by T1-weighted dynamic contrast-enhanced magnetic resonanceimaging: a receiver operating characteristic study. Acta Radiol, vol. 47, pp. 303–10, Apr. 2006.

F. Mazzocchi, Complexity in biology: Exceeding the limits of reductionism and determinism using complexity theory. EMBO reports, vol. 9 (1), pp. 10-4,Jan. 2008.

G. D. Durgin, Theory of Stochastic Local Area Channel Modeling For Wireless Communications. Final Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University, 2000.

A. J. Brown, Spectral curve fitting for automatic hyperspectral data analysis. IEEE Trans Geosci Rem Sens, vol. 44, pp. 1601-08, 2006.

H.A. Fritsche, R.C. Bast, CA125 in ovarian cancer: advances and controversy. Clin Chem., vol. 44, pp. 1379-80, Juli. 1998.

L. Fan, M., Yin, C. Ke, T. Ge, G. Zhang, W., W. Zhang, X. Zhou, G. Lou, and K. Li, Use of Plasma Metabolomics to Identify Diagnostic Biomarkers for Early Stage Epithelial Ovarian Cancer, Journal of Cancer, vol. 7, pp. 1265-1272, Jun 2016.

M. J. Duffy, J. M. Bonfrer , J. Kulpas, G. J. S. Rustin, G. Soletormos, G. C. Torre, M. K. Tuxen, and M. Zwirner, CA125 in ovarian cancer: European Group on Tumor Markers guidelines for clinical use. Int J Gynecol Cancer, vol. 15, pp. 679–691, Sept. 2005.

R. T. Fortner, A. F. Vitonis, H. Schock, A. Hüsing, T. Johnson, R. N. Fichorova, T. Fashemi, H. S. Yamamoto, A. Tjønneland, L. Hansen, K. Overvad, M. Boutron-Ruault, M. Kvaskoff, G. Severi, H. Boeing, A. Trichopoulou, V. Benetou, C. La Vecchia, D. Palli, S. Sieri, R. Tumino, G Matullo, A. Mattiello, N. C. Onland-Moret, P. H. Peeters, E. Weiderpass, I. T. Gram, M. Jareid, J. R. Quirós, E. J. Duell, M.Sánchez, M. D. Chirlaque, E. Ardanaz, N. Larrañaga, B. Nodin, J. Brändstedt, A. Idahl, K. Khaw, N. Allen, M. Gunter, M. Johansson, L. Dossus, M. A. Merritt, E. Riboli, D. W. Cramer, R. Kaaks, and K. L. Terry Correlates of circulating ovarian cancer early detection markers and their contribution to discrimination of early detection models: results from the EPIC cohort,Journal of Ovarian Research, vol.10, pp. 1-14, March 2017.

A. Gazze,R. Ademefun, R. S. Conlan, and S. R Teixeira, Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors. Journal of Interdisciplinary Nanomedicine, vol. 3(2) 2018, 3 (2), pp. 82-88, May 2018.

S. Sakamoto, W. Putalun , S. Vimolmangkang, W. Phoolcharoen, Y. Shoyama, H. Tanaka, and S. Morimoto, Enzymeâ€linked immunosorbent assay for the quantitative/qualitative analysis of plant secondary metabolites. Journal of Natural Medicines, vol. 72, pp. 32–42, Nov. 2018.

L. Landgraf, C. Christner, W. Storck, I. Schick, I. Krumbien, H. Dähring, K Haedicke, K. Heinz-Herrman, U. Teichgräber, J. R. Reichenbach, W. Tremel, S. Tenzer, and I. Hilger, A plasma protein corona enhances the biocompatibility of Au@Fe3O4 Janus particles. Biomaterials, vol.68, pp.77-88, Aug. 2015

L. K. Müller, J. Simon , S. Schüttler , K. Landfester, V. Mailänder, and K. Mohr, Pre-coating with protein fractions inhibits nano- carrier aggregation in human blood plasma. RSC Adv., vol. 6, pp. 96495–96509. Sept. 2016.

K. A. Nugroho, K. Abraha , and Ngadikun, The Mechanism of Erythrocytes Aggregation in EDTA-Blood of Ovarian Cancer Patients Viewed by Coulomb’s Law. IJASEIT, vol. 7 (6), pp. 2175-2182, S3pt. 2017.

Higgins JP. Nonlinear systems in medicine. Yale J Biol Med., vol. 75(5-6), pp.247-60, Sep-Dec. 2002.

J. A Rioux, complex, nonlinear dynamic systems perspective on ayurveda and ayurvedic research. JTCM,vol. 18(7), pp. 709–18, Juli. 2012.

G. Chevalier, S. T. Sinatra, J. L. Oschman, and R. M.Delany, Earthing (grounding) the human body reduces bloodviscosity—a major factor in cardiovascular disease. J Altern Complement Med., vol. 19(2), pp. 102–110, Feb. 2013.

Wu, H. Yin, J. Zhu, J. Ronald, R.J. Buckanovich, J. D. Thorpe, J. Dai, N. Urban, and D. M. Lubman, Validation of LRG1 as a potential biomarker for detection of epithelial ovarian cancer by a blinded study. PLoS One., vol. 2009, pp. 1-11, March. 2015.

A. Sze, D. Erickson, L. Ren, and D. Li, Zeta-potential measurement using the Smoluchowski equation and the slope of the current–time relationship in electroosmotic flow. J. Colloid Interface Sci.,vol. 261, pp.402–10, May. 2003.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development