Enhancing the Sausage Quality of Indonesian Local Lamb Meat with Microbial Transglutaminase Enzyme: Physicochemical, Textural, and Microstructure Properties

- Iswoyo, Juni Sumarmono, Triana Setyawardani


Indonesia Batur local lamb meat has emerged as a promising meat source for the production of emulsion-type sausages. However, the manufacturing process of this sausage typically requires high-fat content to achieve the desired quality characteristics. To address this issue, this study investigates utilizing microbial transglutaminase (MTGase) enzyme to improve local lamb meat sausage's physicochemical, textural, and microstructure features. This research aimed to develop emulsion sausages using local lamb meat by incorporating the MTGase enzyme. The experimental design encompassed various treatments, including a control group, the addition of 10% tapioca, and incremental amounts of MTGase (ranging from 0.2% to 1.0%). The sausages were evaluated comprehensively: pH value, color, tenderness, texture, and microstructure. The statistical analysis, employing ANOVA, demonstrated a significant improvement in pH, firmness, toughness, cohesiveness, and gumminess with the addition of MTGase, while also influencing the color of the sausages (P<0.05) that can be attributed to the MTGase enzyme's capacity to bind myofibrillar proteins through cross-linking reactions, enhancing texture and tenderness. Nevertheless, it was noticed that the presence of MTGase led to a* and b* values reduction due to the denaturation of globin and carotenoid pigments; however, these values remained within an acceptable range. Notably, the incorporation of 0.8% and 1.0% MTGase resulted in forming an ordered and homogeneous network microstructure, exhibiting fewer voids within the sausages. Overall, the findings of this study demonstrate the successful enhancement of the quality of sausages, thereby significantly increasing the acceptability of the final product.


Emulsion-type sausage; local lamb; MTGase enzyme; tenderness; texture

Full Text:



K.-M. Kang, S.-H. Lee, and H.-Y. Kim, "Effects of Using Soybean Protein Emulsion as a Meat Substitute for Chicken Breast on Physicochemical Properties of Vienna Sausage," Food Sci. Anim. Resour., vol. 42, no. 1, pp. 73–83, Jan. 2022, doi: 10.5851/kosfa.2021.e63.

A. Sodiq, P. Yuwono, and S. Santosa, “Litter Size and Lamb Survivability of Batur Sheep in Upland Areas of Banjarnegara Regency, Indonesia,†J. Anim. Prod., vol. 13, no. 3, pp. 166–172, 2011.

K. Listyarini, J. Jakaria, M. J. Uddin, C. Sumantri, and A. Gunawan, "Association and Expression of CYP2A6 and KIF12 Genes Related to Lamb Flavour and Odour," Tropic. Anim. Sci. J., vol. 41, no. 2, Art. no. 2, Jul. 2018, doi: 10.5398/tasj.2018.41.2.100.

S. A. Kasaiyan, I. Caro, D. D. Ramos, B. K. Salvá, A. Carhuallanqui, M. Dehnavi, J. Mateo, "Effects of the use of raw or cooked chickpeas and the sausage cooking time on the quality of a lamb-meat, olive-oil emulsion-type sausage," Meat Sci., vol. 202, p. 109217, Aug. 2023, doi: 10.1016/j.meatsci.2023.109217.

F. A. L. de Carvalho, P. E. S. Munekata, A. Lopes de Oliveira, M. Pateiro, R. Domínguez, M. A. Trindade, J. M. Lorenzo, "Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil," Food Rev. Int., vol. 136, p. 109487, Oct. 2020, doi: 10.1016/j.foodres.2020.109487.

A. Rabadán, M. Ãlvarez-Ortí, E. Martínez, A. Pardo-Giménez, D. C. Zied, and J. E. Pardo, "Effect of replacing traditional ingredients for oils and flours from nuts and seeds on the characteristics and consumer preferences of lamb meat burgers," LWT, vol. 136, p. 110307, Jan. 2021, doi: 10.1016/j.lwt.2020.110307.

L. P. Darmayanti, N. S. Antara, and A. Selamet Duniaji, "Physicochemical Characteristic and Protein Profile of Fermented Urutan (Balinese Sausage)," Inter. J. Adv. Sci. Eng. Inf. Technol., vol. 4, no. 2, p. 112, 2014, doi: 10.18517/ijaseit.4.2.380.

E. Saldaña, A. L. da S. C. Lemos, M. M. Selani, F. P. Spada, M. A. de Almeida, and C. J. Contreras-Castillo, "Influence of animal fat substitution by vegetal fat on Mortadella-type products formulated with different hydrocolloids," Scientia Agricola, 2015, doi: https://doi.org/10.1590/0103-9016-2014-0387.

S. L. da Silva, J. T. Amaral, M. Ribeiro, E. E. Sebastião, C. Vargas, "Fat replacement by oleogel rich in oleic acid and its impact on the technological, nutritional, oxidative, and sensory properties of Bologna-type sausages," Meat Sci., vol. 149, pp. 141–148, Mar. 2019, doi: 10.1016/j.meatsci.2018.11.020.

R. T. Heck, R. G. Vendruscolo, M. de Araújo Etchepare, A. J. Cichoski, C. R. de Menezes, "Is it possible to produce a low-fat burger with a healthy n−6/n−3 PUFA ratio without affecting the technological and sensory properties?," Meat Sci., vol. 130, pp. 16–25, Aug. 2017, doi: 10.1016/j.meatsci.2017.03.010.

E. Danesh, M. Goudarzi, and H. Jooyandeh, "Short communication: Effect of whey protein addition and transglutaminase treatment on the physical and sensory properties of reduced-fat ice cream," J. Dairy Sci., vol. 100, no. 7, pp. 5206–5211, Jul. 2017, doi: 10.3168/jds.2016-12537.

E. Danesh, M. Goudarzi, and H. Jooyandeh, "Transglutaminase-mediated incorporation of whey protein as fat replacer into the formulation of reduced-fat Iranian white cheese: physicochemical, rheological and microstructural characterization," J. Food Meas. Charact., vol. 12, no. 4, pp. 2416–2425, Dec. 2018, doi: 10.1007/s11694-018-9858-5.

E. A. Romeih, M. Abdel-Hamid, and A. A. Awad, "The addition of buttermilk powder and transglutaminase improves textural and organoleptic properties of fat-free buffalo yogurt," Dairy Sci. & Technol., vol. 94, no. 3, pp. 297–309, May 2014, doi: 10.1007/s13594-014-0163-8.

M. Kieliszek and A. Misiewicz, "Microbial transglutaminase and its application in the food industry. A review," Folia Microbiol. (Praha), vol. 59, no. 3, pp. 241–250, May 2014, doi: 10.1007/s12223-013-0287-x.

J. Weiss, M. Gibis, V. Schuh, and H. Salminen, "Advances in ingredient and processing systems for meat and meat products," Meat Sci., vol. 86, no. 1, pp. 196–213, Sep. 2010, doi: 10.1016/j.meatsci.2010.05.008.

H. Uran and İ. Yilmaz, "A research on determination of quality characteristics of chicken burgers produced with transglutaminase supplementation," Food Sci. Technol., vol. 38, no. 1, pp. 19–25, Oct. 2017, doi: 10.1590/1678-457x.33816.

P. M. Izmail, P. H. Riyadi, and A. S. Fahmi, "Effect of Different Types of Fish on Fish Sauages with The Addition of Transglutaminase," J. Adv. Food Sci. Technol., pp. 12–20, Apr. 2022.

N. Thephuttee and P. Theprugsa, "Stability and Microstructure of Emulsion System in Sterilized Kai-yor (Thai Chicken Sausage)," Chiang Mai Univ. J. Nat. Sci., vol. 19, no. 4, Sep. 2020, doi: 10.12982/CMUJNS.2020.0050.

A. M. Ahhmed, S. Kawahara, K. Ohta, K. Nakade, T. Soeda, and M. Muguruma, "Differentiation in improvements of gel strength in chicken and beef sausages induced by transglutaminase," Meat Sci., vol. 76, no. 3, pp. 455–462, Jul. 2007, doi: 10.1016/j.meatsci.2007.01.002.

C. Kuraishi, K. Yamazaki, and Y. Susa, "Transglutaminase: Its Utilization in the Food Industry," Food Rev. Int., vol. 17, no. 2, pp. 221–246, Feb. 2001, doi: 10.1081/FRI-100001258.

Y. Zhu, A. Rinzema, J. Tramper, and J. Bol, "Microbial transglutaminase—a review of its production and application in food processing," Appl. Microbiol. Biotechnol., vol. 44, no. 3, pp. 277–282, Dec. 1995, doi: 10.1007/BF00169916.

I. Thohari, M. Mustakim, M. C. Padaga, and P. P. Rahayu, Teknologi Hasil Ternak (Livestock Technology), 1st ed. Malang: UB Press, 2017.

K. B. Chin, M. Y. Go, and Y. L. Xiong, "Konjac flour improved textural and water retention properties of transglutaminase-mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation," Meat Sci., vol. 81, no. 3, pp. 565–572, Mar. 2009, doi: 10.1016/j.meatsci.2008.10.012.

Y.-X. Liu, M.-J. Cao, and G.-M. Liu, "17 - Texture analyzers for food quality evaluation," in Evaluation Technologies for Food Quality, J. Zhong and X. Wang, Eds., in Woodhead Publishing Series in Food Science, Technology and Nutrition. Woodhead Publishing, 2019, pp. 441–463. doi: 10.1016/B978-0-12-814217-2.00017-2.

R. A. Pedroso and I. M. Demiate, “Avaliação da influência de amido e carragena nas características físico-químicas e sensoriais de presunto cozido de peru,†Ciênc. Tecnol. Aliment., vol. 28, no. 1, pp. 24–31, Mar. 2008, doi: 10.1590/S0101-20612008000100005.

T. Uzlaşır, N. Aktaş, and K. E. Gerçekaslan, “Pumpkin Seed Oil as a Partial Animal Fat Replacer in Bologna-type Sausages,†Food Sci. Anim. Resour., vol. 40, no. 4, pp. 551–562, Jul. 2020, doi: 10.5851/kosfa.2020.e32.

A. Iqbal, D.-W. Sun, and P. Allen, "Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system," J. Food Sci., vol. 117, no. 1, pp. 42–51, Jul. 2013, doi: 10.1016/j.jfoodeng.2013.02.001.

Q. Q. Zhang, M. Jiang, X. Rui, W. Li, X. H. Chen, and M. S. Dong, "Effect of rose polyphenols on oxidation, biogenic amines and microbial diversity in naturally dry fermented sausages," Food Control, vol. 78, pp. 324–330, 2017, doi: 10.1016/j.foodcont.2017.02.054.

A. Berardo, B. Devreese, H. De Maere, D. A. Stavropoulou, G. van Royen, F. Leroy, S. de Smet, "Actin proteolysis during ripening of dry fermented sausages at different pH values," Food Chem., vol. 221, pp. 1322–1332, Apr. 2017, doi: 10.1016/j.foodchem.2016.11.023.

M. A. Pires, I. R. dos Santos, J. C. Barros, and M. A. Trindade, "Effect of replacing pork backfat with Echium oil on technological and sensory characteristics of bologna sausages with reduced sodium content," LWT, vol. 109, pp. 47–54, Jul. 2019, doi: 10.1016/j.lwt.2019.04.009.

C. de Souza Paglarini, G. de Figueiredo Furtado, A. R. Honório, L. Mokarzel, V. A. da Silva Vidal, "Functional emulsion gels as pork back fat replacers in Bologna sausage," Food Structure, vol. 20, p. 100105, Apr. 2019, doi: 10.1016/j.foostr.2019.100105.

A. Sofiana, “Penambahan Tepung Protein Kedelai Sebagai Pengikat Pada Sosis Sapi (The Addition of Soybean Protein Flour as Binding Agent in Beef Sausages),†J. Ilmiah Ilmu-ilmu Peternakan, vol. 15, no. 1, pp. 1–7, 2012.

T. Pintado, A. Herrero, C. Ruiz-Capillas, M. Triki, P. Carmona, and F. Jiménez-Colmenero, "Effects of emulsion gels containing bioactive compounds on sensorial, technological, and structural properties of frankfurters," Food sci. technol. int., vol. 22, no. 2, pp. 132–145, Mar. 2016, doi: 10.1177/1082013215577033.

C. Poyato, D. Ansorena, I. Berasategi, Ã. Navarro-Blasco, and I. Astiasarán, "Optimization of a gelled emulsion intended to supply ω-3 fatty acids into meat products by means of response surface methodology," Meat Sci., vol. 98, no. 4, pp. 615–621, Dec. 2014, doi: 10.1016/j.meatsci.2014.06.016.

S. B. Gore, A. K. Balange, M. B. Katare, H. S. Mogalekar, S. S. Relekar, and S. W. Belsare, "Functional and Textural Characteristics of Fish Mince Sausages Prepared Using Microbial Transglutaminase," In Review, preprint, May 2023. doi: 10.21203/rs.3.rs-2896966/v1.

S. Benjakul, W. Visessanguan, C. Thongkaew, and M. Tanaka, "Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage," Food Res. Inter., vol. 36, no. 8, pp. 787–795, Jan. 2003, doi: 10.1016/S0963-9969(03)00073-5.

J. A. Ramírez, A. Del Ãngel, G. Velazquez, and M. Vázquez, "Production of low-salt restructured fish products from Mexican flounder (Cyclopsetta chittendeni) using microbial transglutaminase or whey protein concentrate as binders," Eur. Food Res. Technol., vol. 223, no. 3, pp. 341–345, Jul. 2006, doi: 10.1007/s00217-005-0210-z.

Y.-S. Choi, T. -J. Jeong, K.-E. Hwang, D.-H. Song, Y.-K. Ham, H.-W. Kim, Y.-B. Kim, C.-J. Kim, "Combined effects of Laminaria japonica and transglutaminase on physicochemical and sensory characteristics of semi-dried chicken sausages," Poultry Science, vol. 95, no. 8, pp. 1943–1949, Aug. 2016, doi: 10.3382/ps/pew093.

Z. Pietrasik and E. C. Y. Li-Chan, "Binding and textural properties of beef gels as affected by protein, κ-carrageenan and microbial transglutaminase addition," Food Res. Inter., vol. 35, no. 1, pp. 91–98, Jan. 2002, doi: 10.1016/S0963-9969(01)00123-5.

A. C. V. C. S. Canto, B. R. C. C. Lima, S. P. Suman, C. A. Lazaro, M. L. G. Monteiro, C. A. Conte-Junior, M. Q. Freitas, A. G. Cruz, E. B. Santos, T. J. P. Silva, "Physico-chemical and sensory attributes of low-sodium restructured caiman steaks containing microbial transglutaminase and salt replacers," Meat Sci., vol. 96, no. 1, pp. 623–632, Jan. 2014, doi: 10.1016/j.meatsci.2013.08.003.

H. S. Mostafa, "Microbial transglutaminase: An overview of recent applications in food and packaging," Biocatal. Biotransform., vol. 38, no. 3, pp. 161–177, May 2020, doi: 10.1080/10242422.2020.1720660.

Ş. Öztürkoğlu Budak and H. C. Akal, Eds., Microbial Cultures and Enzymes in Dairy Technology: in Advances in Medical Technologies and Clinical Practice. IGI Global, 2018. doi: 10.4018/978-1-5225-5363-2.

X. Gao, W. Zhang, and G. Zhou, "Emulsion stability, thermo-rheology and quality characteristics of ground pork patties prepared with soy protein isolate and carrageenan," J. Sci. Food Agric., vol. 95, no. 14, pp. 2832–2837, Nov. 2015, doi: 10.1002/jsfa.7023.

C. P. Baron, I. V. H. KjÆrsgård, F. Jessen, and C. Jacobsen, "Protein and Lipid Oxidation during Frozen Storage of Rainbow Trout ( Oncorhynchus mykiss)," J. Agric. Food Chem., vol. 55, no. 20, pp. 8118–8125, Oct. 2007, doi: 10.1021/jf070686f.

R. Coorey, A. Tjoe, and V. Jayasena, "Gelling properties of chia seed and flour," J. Food Sci., vol. 79, no. 5, pp. E859-866, May 2014, doi: 10.1111/1750-3841.12444.

L. Haak, K. Raes, and S. De Smet, "Effect of plant phenolics, tocopherol and ascorbic acid on oxidative stability of pork patties," J. Sci. Food Agric., vol. 89, no. 8, pp. 1360–1365, 2009, doi: 10.1002/jsfa.3595.

DOI: http://dx.doi.org/10.18517/ijaseit.13.5.19210


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development