Combination of Liquid Organic and Chemical Fertilizer on Corn and Soybean Using Intercropping in Ultisols

- Hasnelly, Syafrimen Yasin, - Agustian, - Darmawan


Soybean intercropping has been done a lot. Growth rate, dry matter yield, and N, P, and K nutrient uptake are determined by soil fertility conditions as a plant growth medium. One of the ways to support the growth and yield of maize-soybean plants grown in intercropping is to use liquid organic fertilizers made from landfill leachate combined with chemical fertilizers. This study aimed to determine the ability of liquid organic fertilizer to support the growth and yield of corn-soybean plants planted in intercropping in the field in combination with chemical fertilizers. The materials to be used in this study were Ultisol soil, liquid organic fertilizer, Urea (N), T.S.P. (P), KCl (K), dolomite, sweet corn seed var. Nusa 1 and soybean var. Anjosmoro. This study used an experimental method with a randomized block design. The treatments were A = 4% LOF + 0 NPK, B = 4% LOF + 1/5 NPK, C = 4% LOF + 2/5 NPK, D = 4% LOF + 3/5 NPK, E = 4% LOF + 4/5 NPK, and F = 4% LOF + 1 NPK. The results showed that the giving of LOF combined with N.P.K. affected plant height, leaf area, plant stover weight, soybean cob/seed weight, absorption of nutrients N, P, K, metal content of Pb, Cd, Cu and Cr and N.K.L. in corn and soybean crops. The best 4% LOF + 2/5 NPK treatment for soybeans and the best 4% LOF + 3/5 NPK treatment for corn plants.


Competitiveness; intercropping; corn; soybean; organic fertiliser; combination

Full Text:



L. V. Kochian, O.A. Heokenga and M.A. Pineros. How do crop plants tolerate acid soils? Mechanisms of aluminium tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 55:459-493. 2004 DOI: 10.1146/annurev.arplant.55.031903.141655

D. Chen, Lan Z, Bai X, Grace J B, and Bai Y. Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe. Journal of Ecology. 101:1322–1334. 2013.

P. Xu, S. Ma, X. Rao, S. Liao, J. Zhu and C. Yang. Effects of Land Use on the Mineralization of Organic Matter in Ultisol. Agronomy. 12, 2915. 2022. DOI:10.3390/agronomy12122915.

S.E. Hale, N. L. Nurida, Jubaedah., J. Mulder, E. Sormo, L. Silvani, S. Abiven, S. Joseph, S. Taherymoosavi, and G. Cornelissen. The effect of biochar, lime and ash on maise yield in a long-term field trial in an Ultisol in the humid tropics. Science of The Total Environment Vol. 719, 137455. 1- 9. 2020. DOI:10.1016/j.scitotenv.2020.137455

P. Zu, Y. Liu, J. Zhu, L. Shi, Q. Fu, J. Chen, H. Hu, and Q Huang. Influence mechanisms of long-term fertilisations on the mineralisation of organic matter in Ultisol. Soil and Tillage Research Vol. 201, 104594. 2020. DOI: 10.1016/j.still.2020.104594.

G. Ye, Y. Lin, D. Liu, Z. Chen, J. Luo, N. Bolan, J. Fan, and W. Ding. Long-term manure application over plant residues mitigates acidification, builds soil organic carbon and shifts prokaryotic diversity in acidic Ultisols. Applied Soil Ecology. Vol. 133: 24-33. 2019. DOI: 10.1016/j.apsoil.2018.09.008.

N. P. Stamford, E. V. N. da Silva, W. S. Oliveira, M. S. Martins, A. S. Moraes, J. A. De Barros, and M. I. De Freitas. Benefits of microbial fertiliser in interspecific interaction with textile sludges on cowpea in a Brazilian Ultisol and on wastes toxicity. Environmental Technology & Innovation. Vol 18, 100756. 2020. DOI:10.1016/j.eti.2020.100756.

Y. He, F. Gu, C. Xu, and Y. Wang. Assessing the influence of organic and inorganic amendments on the physical-chemical properties of a red soil (Ultisol) quality. CATENA. Vol. 183. 104231. 2019. 10.1016/j.catena.2019.104231.

W. Ye, H. Liu, M. Jiang, J. Lin, K. Ye, S. Fang, Y. Xu, S. Zhao, B. V. der Bruggen, and Z. He. Sustainable management of landfill leachate concentrate through recovering humic substance as liquid fertiliser by loose nanofiltration. Water Research 157:555-563. 2019. DOI:10.1016/j.watres.2019.02.060

T. A. Kurniawan, M. H. D. Othman, X. Liang, H. H. Goh, and K. W. Chew. From liquid waste to mineral fertiliser: Recovery, recycling and reuse of high-value macro-nutrients from landfill leachate to contribute to circular economy, food security, and carbon neutrality. Process Safety and Environmental Protection. Vol. 170:791-807. 2023. DOI:10.1016/j.psep.2022.12.068.

F. Parvin and S. M. Tareq. Impact of landfill leachate contamination on surface and groundwater of Bangladesh: a systematic review and possible public health risks assessment. Applied Water Science. 11:100. 2021. DOI:10.1007/s13201-021-01431-3.

A. Wdowczyk and A. Szyma Ìnska-Pulikowska. Analysis of the possibility of conducting a comprehensive assessment of landfill leachate contamination using physicochemical indicators and toxicity tests. Ecotoxicology and Environmental Safety 221:112434. 2021. DOI:10.1016/j.ecoenv.2021.112434.

A. Hafeez, R. Rasheed, M. A. Ashraf, F. F. Qureshi, I. Hussain, and M. Iqbal. Chapter 8 - Effect of heavy metals on growth, physiological and biochemical responses of plants. Plants and Their Interaction to Environmental Pollution. Damage Detection, Adaptation, Tolerance, Physiological and Molecular Responses:139-159. 2023. DOI:10.1016/B978-0-323-99978-6.00006-6.

J.W. Gabhane, V.P. Bhange, P.D. Patil, S.T. Bankar, and S. Kumar. Recent trends in biochar production methods and its application as a soil health conditioner: a review. S.N. Appl. Sci. 2 1307. 2020. DOI:10.1007/s42452-020-3121-5.

B. A. Mohamed, N. Ellis, C. S. Kim, X. Bi, and W. H. Chen. Engineered biochars from catalytic microwave pyrolysis for reducing heavy metals phytotoxicity and increasing plant growth. Chemosphere 271:129808. 2021. DOI:10.1016/j.chemosphere.2021.129808.

C. Tu, J. Wei, F. Guan, Y. Liu, Y. Sun, and Y. Luo. Biochar and bacteria-inoculated biochar enhanced Cd and Cu immobilisation and enzymatic activity in polluted soil. Environ. Int 137, 105576–105585. 2020. DOI:10.1016/j.envint. 2020.105576.

C. Yuan, B. Gao, Y. Peng, X. Gao, B. Fan, and Q. Chen. A meta-analysis of heavy metal bioavailability response to biochar ageing: Importance of soil and biochar properties. Sci. Total Environ. 756, 144058–144075. 2021. DOI:10.1016/j.scitotenv. 2020.144058.

Hasnelly, S. Yasin, Agustian, and Darmawan. Study of Palm Shell Biochar Capability in Adsorbing Metals on Landfill Leachate. International Journal of Psychosocial Rehabilitation. Vol. 24, Issue 6, pp 13231-13239. 2020.

Hasnelly, S. Yasin, Agustian, and Darmawan.. Response of Growth and Yield of Soybean (Glycine max l. Merril) to the Method and Dose of Leachate Liquid Organic Fertilizer Application. Planta Tropika: Jurnal Agrosains (Journal of Agro Science) Vol 9 (2), 109-115. 2021. DOI: 10.18196/pt.v9i2.4378. 2021.

Y. Li, J. Xu, X. Liu, B. Liu, W. Liu, X. Jiao, and J. Zhou. Win-win for monosodium glutamate industry and paddy agriculture: Replacing chemical nitrogen with liquid organic fertiliser from wastewater mitigates reactive nitrogen losses while sustaining yields. Journal of Cleaner Production Vol. 347. 131287. 2022. DOI:10.1016/j.jclepro.2022.131287.

Z. Huang, H. Guan, H. Zheng, M. Wang, P. Xu, S. Dong, Y. Yang, and J. Xiao. Novel liquid organic fertiliser: A potential way to recycle spent mushroom substrate effectively. Journal of Cleaner Production. Vol. 376:134368. 2022. DOI:10.1016/j.jclepro.2022.134368

Y. Liu, J. Sun, F. Zhang, and L. Li. The plasticity of root distribution and nitrogen uptake contributes to the recovery of maise growth at late growth stages in wheat/maise intercropping. Plant and Soil. 447(1–2):1-15. 2020. DOI:10.1007/s11104-019-04034-9.

C. Madembo, B. Mhlanga, C. Thierfelder. Productivity or stability? Exploring maise-legume intercropping strategies for smallholder Conservation Agriculture farmers in Zimbabwe. Agric. Syst. 185, 1–14. 2020. DOI:10.1016/j.agsy.2020.102921.

F. Zhi-dan, Z. Li, C. Ping, D. Qing, P. Ting, S. Chun, W. Xiao-chun, L. Wei-guo, Y. Wen-yu, and Y. Tai-wen. Effects of maise-soybean relay intercropping on crop nutrient uptake and soil bacterial community. Journal of Integrative Agriculture, 18(9):2006–2018. 2019. DOI: 10.1016/S2095-3119(18)62114-8

M.N. Shah, S. Hussain, H. Ali, M Khan, A. Bukhari, S. Ali, M. Naveed, and M. Sohail. Comparative screening of hybrids and synthetic maise (Zea mays L.) cultivars for drought-sensitive and drought-tolerant under different irrigation regimes. J. Plant Environ. 4 (1), 09–17. 2022. DOI: 10.33687/jpe.004.01.3995

E. Mugi-Ngenga, S. Zingore, L. Bastiaans, N. P. R. Anten, and K. E. Giller. Farm-scale assessment of maise–pigeon pea productivity

In Northern Tanzania. Nutr Cycl Agroecosyst. 120:177–191. 2021


C. Ngosong, B. N. Tatah, M. N. E. Olougou, C. Suh, R. N. Nkongho, M. A. Ngone, D. T. Achiri, G. V. T. Tchakounté, and S. Ruppel. Inoculating plant growth-promoting bacteria and arbuscular mycorrhiza fungi modulate rhizosphere acid phosphatase and nodulation activities and enhance soybean productivity (Glycine max). Front. Plant Sci. Vol. 13:1-17. 2022. DOI:10.3389/fpls.2022.934339.

D.A. Wedin, and M.P. Russelle. Nutrient cycling in forage production systems. In: Moore, K.J. et al. (Eds.), Forages: The Science of Grassland Agriculture, seventh ed.John Wiley & Sons, pp. 215–225. 2020.

Local government. Ministry of Agriculture Agricultural Extension and Human Resources Development Agency. Jakarta. 2017.

Z. Xu, C. Lia, C. Zhang, Y. Yu, W. V. Werf, and F. Zhang. Intercropping maise and soybean increases the efficiency of land and fertiliser nitrogen use; A meta-analysis. Field Crops Research 246:107661. 2020. DOI:10.1016/j.fcr.2019.107661.

W. Zhang, Y-X. Wei, A. Khan, J-S. Lu, J-L. Xiong, S-G. Zhu, X-W. Fang, W. Wang, M. Hao, L. Zhao, X-L. Zhang, J-M. Deng, S-Q. Li, and Y-C. Xiong. Intercropped soybean boosts nitrogen benefits and amends nitrogen use patterns under plastic film mulching in the semiarid maise field. Field Crops Research Vol. 295:108881. 2023. DOI:10.1016/j.fcr.2023.108881.

Ermadani, Hermansah, Yulnafatmawita, A. Syarif, and I. Lenin. Use of Organic Waste as an Alternative Organic Fertilizer and Synthetic Fertilizer to Ameliorate Acid Soil Productivity. International Journal on Advanced Science Engineering Information Technology. Vol. 9(3): 822-828. 2019. DOI:10.18517/ijaseit.9.3.4399.

M. Schmierer, O. Knopf, and F. Asch. Growth and photosynthesis responses of a super dwarf rice genotype to shade and nitrogen supply. Rice Sci. 28(2): 178-190. 2021. DOI: 10.1016/j.rsci.2021.01.007.

J. L. Liu, J.D Chen, K. Xie, Y. Tian, A.N Yan, J.J Liu, Y.J Huang, S.S Wang, Y.Y Zhu, A.Q Chen, and G.H Xu. A mycorrhiza-specific H+-ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. Plant Cell Environ. 43(4):1069-1083. 2020. DOI: 10.1111/pce.13714.

M. Jiaying, C. Tingting, L. Jie1, F. Weimeng, F. Baohua, L. Guangyan, L. Hubo, L. Juncai, W. Zhihai, T. Longxing, and F. Guanfu. Functions of Nitrogen, Phosphorus and Potassium in Energy Status and Their Influences on Rice Growth and Development. Rice Science. 29(2): 166-178. 2022. DOI: 10.1016/j.rsci.2022.01.005.

D.M Zeffa, L.Z Perini, M.B Silva, N.V Sousa, C.A Scapim, A.L.M Oliveira, A.T.A Junior, and L.S.A Goncalves. Azospirillum brasilense promotes increases in growth and nitrogen use efficiency of maise genotypes. PLoS One. 14(4), e0215332. 2019. DOI: 10.1371/journal.pone.0215332.

D. Xiao, S. Xiao, Y. Ye, W. Zhang, X. He, and K. Wang. Microbial biomass, metabolic functional diversity, and activity are affected differently by tillage disturbance and maise planting in typical karst calcareous soil. J. Soil. Sediment. 19 (2), 809–821. 2019. DOI:10.1007/s11368-018-2101-5.

B. Liu, X. Wang, L. Ma, D. Chadwick, and X. Chen. Combined applications of organic and synthetic nitrogen fertilisers for improving crop yield and reducing reactive nitrogen losses from China's vegetable systems: A meta-analysis. Environmental Pollution, Vol. 269:116143. 2021. DOI:10.1016/j.envpol.2020.116143.

M. T. Darini and E. Sulistyaningsih. Combination of Cow Manure Rate and Different Sources of Nitrogen Humite on the Nutritional Content and Yield of Aloe vera L. Plant in Sandy Soil. International Journal on Advanced Science Engineering Information Technology. Vol. 10 (4): 1631-1638. 2020. DOI:10.18517/ijaseit.10.4.8479.

P. Chen, Q. Du, X. M. Liu, Zhou L, S. Hussain, L. Lei, C. Song, X. C. Wang, W. G. Liu, F. Yang, K. Shu, J. Liu, J. B. Du, W. Y. Yang, and T. W. Yong. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maise-soybean relay strip intercropping system. PLoS ONE, 12, e0184503. 2017.

M. Nabi. Chapter eleven - Role of microorganisms in plant nutrition and soil health. Sustainable Plant Nutrition. Molecular Interventions and Advancements for Crop Improvement. Pages 263-282. 2023. DOI:10.1016/B978-0-443-18675-2.00016-X

C. Ngosong, B. N. Tatah, M. N. E. Olougou, C. Suh, R. N. Nkongho, M. A. Ngone, D. T. Achiri, G. V. T. Tchakounté, and S. Ruppel. Inoculating plant growth-promoting bacteria and arbuscular mycorrhiza fungi modulate rhizosphere acid phosphatase and nodulation activities and enhance soybean productivity (Glycine max). Front. Plant Sci. Vol. 13:1-17. 2022. DOI:10.3389/fpls.2022.934339.

S. Niu, H. Xu, Z. Sun, D. Wang, W. Zhao, and Q. Ma. Effect of N.P.K. application rates and basal/dressing ratios on yield and nutrient utilisation of yam. Journal of Plant Nutrition and Fertilizers, 26(9), 1702–1713. 2020.

R.F Firmano, A.O. Junior, Castro, and L.R.F. Alleoni. After eight years of K deprivation, potassium rates on the cationic balance of an Oxisol and soybean nutritional status. Experimental Agriculture. Vol. 52(2):1–19. 2019. DOI:10.1017/S0014479719000371.

Solihin, E., R. Sudirja., M. Damayani., dan N.N. Kamaludin. Relationship of N, P, and K Absorption of Chili Plants to Their Residues in Soil Given Organic Liquid Fertilizer with NPK (Hubungan Serapan N, P, dan K Tanaman Cabai terhadap Residunya di dalam Tanah yang Diberi Pupuk Cair Organik dengan NPK). Jurnal Agrikultura, 29(2): 105-110. 2018.

P. Chen, Q. Du, X.M. Liu., L. Zhou, S. Hussain, L. Lei, C. Song, X.C. Wang, W.G. Liu, F. Yang, K. Shu, J. Liu, J.B. Du, W. Y. Yang, and T.W. Yong. Effects of reduced nitrogen inputs on crop yield and nitrogen use efficiency in a long-term maise-soybean relay strip intercropping system. PLoS ONE. 12, e0184503. 2017. DOI:10.1371/journal.pone.0184503.

X.C Wang, X. Deng, T. Pu, C. Song, T.W. Yong, F. Yang, X. Sun, W.G. Liu, Y. Yan, J.B. Du, J. Liu, K. Shu, and W.Y Yang. Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research. 204:12–22. 2017. DOI: 10.1016/j.fcr.2016.12.020.

M. Amri, M.R. Rjeibi, M. Gatrouni, D.M.R. Mateus, N. Asses, H.J.O. Pinho, and C. Abbes. Isolation, Identification, and Characterization of Phosphate-Solubilizing Bacteria from Tunisian Soils. Microorganisms. 11, 783;1-14. 2023. DOI:10.3390/microorganisms11030783.

C.N Diep and B.T Vinh. Determination of Phosphate and Potassium Solubilising Bacteria from Weathered Materials of Denatured Rock Mountain, HaTien, KienGiang Province, Vietnam. New Visions in Biological Science Vol. 1:48-59. 2021. DOI:10.9734/bpi/nvbs/v1/11456D.

B.P.O.M. Maximum Limit of Heavy Metal Contamination in Processed Food (Batas Maksimum Cemaran Logam Berat dalam Pangan) Olahan. Direktorat Jenderal Peraturan Perundang-Undangan Kementerian Hukum dan Hak Asasi Manusia Republik Indonesia. Jakarta. 2018.

SNI. Maximum limit of heavy metal contamination in food (Batas maksimum cemaran logam berat dalam pangan). SNI. 7387:2009. 2009.

P. Jali, C. Pradhan, and A.B Das. Effects of cadmium toxicity in plants: a review article. Sch. Acad. J. Biosci. 4, 1074–1081. 2016. DOI:10.21276/sajb.2016.4.12.3.

F. Zhang, M. Liu, Y. Li, Y. Che, and Y. Xiao. Effects of arbuscular mycorrhizal fungi, biochar and cadmium on the yield and element uptake of Medicago sativa. Sci. Total Environ. 655:1150–1158. 2019. DOI: 10.1016/j.scitotenv.2018.11.317

S. Collin, A. Baskar, D.M. Geevarghese, M.N.V.S. Ali, P. Bahubali, R. Choudhary, V. Lvov, G.I. Tovar, F. Senatov, S. Koppala, and S. Swamiappan. Bioaccumulation of lead (Pb) and its effects in plants: A review. Journal of Hazardous Materials Letters 3, 100064. 2022. DOI: 10.1016/j.hazl.2022.100064.

P. Sharma. Efficiency of bacteria and bacterial assisted phytoremediation of heavy metals: an update. Bioresour. Technol. 328:124835. 2021. DOI: 10.1016/j.biortech.2021.124835

T. Ke, G. Guo, J. Liu, C. Zhang, Y. Tao, P. Wang, Y. Xu, and L. Chen. Improvement of the cu and cd phytostabilisation efï¬ciency of perennial ryegrass through the inoculation of three metal-resistant PGPR strains. Environ. Pollut. 271, 116314. 2021. DOI:10.1016/j.envpol.2020.116314.

G. R. Balboa and I. A. Ciampitti. Estimating biological nitrogen fixation in field-grown soybeans: impact of B value. Plant and Soil. 446:195–210. 2020. DOI:10.1007/s11104-019-04317-1.

S.Tamagno, V. O. Sadras, J. W. Haegele, P. R. Armstrong, and I. A. Ciampitti. The interplay between nitrogen fertiliser and biological nitrogen fixation in soybean: implications on seed yield and biomass allocation. Scientific Reports. 8:17502. 2018. DOI:10.1038/s41598-018-35672-1.

M. Reckling, G. Bergkvist, C.A. Watson, F.L. Stoddard, J. Bachinger. Re-designing organic grain legume cropping systems using systems agronomy. Eur. J. Agron., 112, p. 125951. 2020 DOI:10.1016/j.eja.2019.125951.

S. Sakthivel, A. R. Dhanapal, E. Balakrishnan, and S. Selvapitchai. Quantitative and qualitative analysis of bottle gourd (Lagenaria siceraria): Impact of organic liquid fertiliser. Energy Nexus. Vol. 5:100055. 2022. DOI:10.1016/

M.N. Shah, D.L. Wright, S. Hussain, S.D. Koutroubas, R. Seepaul, S. George, S. Ali, M. Naveed, M. Khan, M.T. Altaf, K. Ghaffor, K. Dawar, A. Syed, and R. Eswaramoorthy. Organic fertiliser sources improve the yield and quality attributes of maise (Zea mays L.) hybrids by improving soil properties and nutrient uptake under drought stress. Journal of King Saud University–Science 35 102570. 2023. DOI:10.1016/j.jksus.2023.102570.

B. AG, E. Rashwan, and T.A. El-Sharkawy. Effect of organic manure, antioxidant and proline on corn (Zea mays L.) grown under saline conditions. Environment, Biodiversity and Soil Security, 1, pp .203-217. 2017. DOI: 10.21608/jenvbs.2018.2513.1021

T.T G. Vanissa, B. Berger, S. Patz, M. Becker , V. TureÄková, O. Novák, D. Tarkowská, F. Henri, and S. Ruppel. The Response of Maize to Inoculation with Arthrobacter sp. and Bacillus sp. in Phosphorus-Deficient, Salinity-Affected Soil. Microorganisms. 8(7), 1005. 2020. DOI:10.3390/microorganisms8071005.

N. Marro, N. Cofre, G. Grilli, C. Alvarez, D. Labuckas, D, Maestri, and C. Urcelay. Soybean yield, protein content and oil quality in response to the interaction of arbuscular mycorrhizal fungi and native microbial populations from mono- and rotation-cropped soils. Applied Soil Ecology. Vol. 152, 103575. 2020. DOI: 10.1016/j.apsoil.2020.103575.

B. Liu, X. Wang, L. Ma, D. Chadwick, and X. Chen. Combined organic and synthetic nitrogen fertiliser applications for improving crop yield and reducing reactive nitrogen losses from China's vegetable systems: a meta-analysis. Environmental Pollution. Vol. 269:116143. 2021. DOI:10.1016/j.envpol.2020.116143.

G.K Gopi, K.S. Meenakumari, K.N. Anith, N.S. Nysanth, dan P. Subha. The application of liquid formulation of a mixture of plant growth-promoting rhizobacteria helps reduce the use of chemical fertilisers in Amaranthus (Amaranthus tricolor L.). Rhizosphere. Vol. 15, 100212. 2020. DOI:10.1016/j.rhisph.2020.100212

Q. Tang, C. Ti, L. Xia, Y. Xia, Z. Wei, and X. Yan. Ecosystem services of partial organic substitution for chemical fertiliser in a peri-urban zone in China. Journal of Cleaner Production Vol. 224, 1, Pages 779-788. 2019. DOI:10.1016/j.jclepro.2019.03.201.

Z. Shi-cheng, L. Ji-long, X. Xin-peng, L. Xiao-mao, L. M. Rosso, Q. Shao-jun, I. Ciampitti, and H. Ping. Peanut yield, nutrient uptake and nutrient requirements in different regions of China. Journal of Integrative Agriculture. 20(9):2502–2511. 2021. DOI: 10.1016/S2095-3119(20)63253-1.

H. Wang, J. Xu, X. Liu, D. Zhang,L. Li, W. Li, and L.Sheng. Effects of long-term application of organic fertiliser on improving organic matter content and retarding acidity in red soil from China. Soil Tillage Res. 195, 104382. 2019. DOI:10.1016/j.still.2019.104382.

F.S Galindo, M.C.M.T. Filho, S. Buzetti, W.L. Rodrigues, G.C. Fernandes, E.H.M. Boleta, M.B. Neto, A. Pereira, P.A.L. Rosa, Ã.T. Pereira, and R.N. Gaspareto. Influence of Azospirillum brasilense associated with silicon and nitrogen fertilisation on macronutrient contents in corn. Open Agric. 5, 126–137. 2020. DOI: 10.1515/opag-2020-0013.

H. Cui, L-L. Liu, J-R Dai, X.N Yu, X. Guo, S-J. Yi, D-Y Zhou, W-H Guo, N. Du. A bacterial community shaped by heavy metals and contributing to health risks in cornfields. Ecotoxicol. Environ. Saf. 2018, 166, 259–269. DOI: 10.1016/j.ecoenv.2018.09.096.

F.J Zhao, Y.B Ma, Y.G Zhu, Z. Tang, and S.P McGrath. Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol. 49:750–759. 2015. DOI: 10.1021/es5047099

A. Javanmard, M. A. Machiani, A. Lithourgidis, M. R. Morshedloo, and A. Ostadi. Intercropping of maise with legumes: A cleaner strategy for improving the quantity and quality of forage. Cleaner Engineering and Technology. xxx(xxxx)xxx. 2020. DOI:10.1016/j.clet.2020.100003.

S-G. Zhu, H-Y. Tao, W-B. Li., R. Zhou, Y-W. Gui, L. Zhu, X-L. Zhang, W. Wang, B-Z. Wang, F-J. Mei, H. Zhu, and Y-C. Xiong. Phosphorus availability mediates plant–plant interaction and field productivity in maise-grass pea intercropping system: Field experiment and global validation. Agricultural Systems Vol. 205:103584. 2023. DOI:10.1016/j.agsy.2022.103584

L. Yan-hong, S. De-yang, L. Guang-hao, Z. Bin, Z. Ji-wang, L Peng, R. Bai-zhao, D. Shu-ting. Maise/peanut intercropping increases photosynthetic characteristics, 13C-photosynthate distribution, and grain yield of summer maise. Journal of Integrative Agriculture. 18(10): 2219–2229. 2019. DOI:10.1016/S2095-3119(19)62616-X.

D. Tilman. Benefits of intensive gricultural intercropping. Nature Plants. 2020. DOI:10.1038/s41477-020-0677-4.

F. Fahrurrozi, Z. Muktamar, N. Setyowatia, M. Chozin, and S. Sudjatmiko. Nutrient Properties of Tithonia-enriched Liquid Organic Fertilizer as Affected by Different Types of Animal Feces and Its Effects on Fresh Weight of Loose-leaf Lettuce (Lactuva sativa L.). International Journal on Advanced Science Engineering Information Technology. Vol. 10(2):730-735. 2020. DOI:10.18517/ijaseit.10.2.4748



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development