Increasing Viability of Bacillus subtilis BR610 through Inulin-Loaded Synbiotic Microcapsules

Bunga Rante Tampangallo, Hilal Anshary, - Sriwulan, Rachman Syah

Abstract


This study aims to determine the growth pattern of Bacillus subtilis BR610 isolated from the intestines of Rabbitfish on broth + inulin nutrient media, the diameter of beads, encapsulation rate, absorption efficiency, and probiotic viability in synbiotic microcapsules when exposed to simulated bile and high temperature. The study was designed with a completely randomized plan. The treatments tested were inulin and alginate concentration, viability in 10% bile, temperatures of 70oC and 90oC. An overview of granular synbiotic microcapsules is presented in the form of images, while the quantitative data obtained was processed using ANOVA with the help of the SPSS application. BR610 synbiotic microcapsule beads are round to oval in shape, transparent white in color, and the granules' elasticity increases with increasing alginate concentration. Statistical test results showed that 1% inulin significantly increased the population of B. subtilis BR610, a diameter of beads 0.9-3 mm, viability of probiotics in beads was 7.776 ± 0.06 log CFU/mL. The highest rate and efficiency of encapsulation and survival of probiotics on simulated were obtained from beads with 2% alginate and 1% inulin concentration. Synbiotic microcapsules can protect probiotics from environmental stress. This research serves as a scholarly resource on the utilization of probiotics in diverse domains, including fish feed production. It is well-established that the temperature within the feed molding apparatus can exceed 70oC during the fabrication of fish feed pellets. However, this is no longer a hindrance due to the implementation of alginate coating on probiotics.

Keywords


Alginate; Bacillus subtilis BR610; extruded; inulin; Rabbitfish

Full Text:

PDF

References


Usman, Kamaruddin, A. Laining, and S. Lante, “Performansi reproduksi induk ikan baronang, Siganus guttatus yang diberi pakan mengandung rumput laut,†J. Ris. Akuakultur, vol. 16, no. 1, pp. 19–30, 2021.

R. Syah, Makmur, B. R. Tampangallo, M. C. Undu, A. I. J. Asaad, and A. Laining, "Rabbitfish (Siganus guttatus) culture in floating net cage with different stocking densities," IOP Conf. Ser. Earth Environ. Sci., vol. 564, no. 1, 2020, doi: 10.1088/1755-1315/564/1/012022.

R. Amalyah, M. Kasim, and M. Idris, “Daya Ramban (Grazing) Ikan Baronang (Siganus Guttatus) Yang Dipelihara Dengan Rumput Laut Kappaphycus Alvarezii Di Perairan Tanjung Tiram, Kabupaten Konawe Selatan,†J. Biol. Trop., vol. 19, no. 2, p. 309, 2019, doi: 10.29303/jbt.v19i2.1075.

B. S. Parawansa, S. A. Ali, N. Nessa, R. A. Rappe, and Y. N. Indar, "Biological analysis of adult rabbitfish (Siganus guttatus bloch, 1787) in seagrass and coral reef ecosystems at laikang bay, takalar regency," IOP Conf. Ser. Earth Environ. Sci., vol. 473, no. 1, 2020, doi: 10.1088/1755-1315/473/1/012006.

S. Salminen et al., "The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics," Nat. Rev. Gastroenterol. Hepatol., vol. 18, no. 9, pp. 649–667, 2021, doi: 10.1038/s41575-021-00440-6.

A. Sri Harti, D. Susi Haryati, W. Setyaningsih, and S. Yatmihatun, "The Potential Chito-Oligosaccharide (COS) as Natural Prebiotic and Preservatives on Synbiotic Tofu in Indonesia," Int. J. Pharma Med. Biol. Sci., vol. 4, no. 3, 2015.

M. F. S. Sam-on, S. Mustafa, A. M. Hashim, M. T. Yusof, S. Zulkifly, and M. A. H. Roslan, "Determination of prebiotic utilisation capability of potential probiotic Bacillus velezensis FS26 through in silico and in vitro approaches," Food Biosci., vol. 53, no. January, p. 102566, Jun. 2023, doi: 10.1016/j.fbio.2023.102566.

L. Luca, M. Oroian, and A. Lobiuc, “The Prebiotic Potential of Some Carbohydrate Substrates on The Growth of Lactobacillus plantarum and Lactobacillus rhamnosus,†vol. XVI, no. 2, pp. 67–74, 2019.

H. Gandomi, S. Abbaszadeh, A. Misaghi, S. Bokaie, and N. Noori, "Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastro-intestinal conditions," LWT-Food Sci. Technol., 2016, doi: 10.1016/j.lwt.2016.01.064.This.

H. Ghafarifarsani et al., "Study on growth enhancement and the protective effects of dietary prebiotic inulin on immunity responses of rainbow trout (Oncorhynchus mykiss) fry infected with AeromonAs hydrophila," vol. 21, no. 2, pp. 543–559, 2021, doi: 10.2478/aoas-2020-0074.

A. Bhatnagar and S. Saluja, "Synergistic effects of autochthonous probiotic bacterium and Mentha piperita diets in Catla catla (Hamilton, 1822) for enhanced growth and immune response," Fish. Aquat. Sci., vol. 22, no. 1, pp. 1–14, 2019, doi: 10.1186/s41240-019-0130-7.

H. Hamsah, W. Widanarni, A. Alimuddin, M. Yuhana, M. Z. Junior, and D. Hidayatullah, "Immune response and resistance of Pacific white shrimp larvae administered probiotic, prebiotic, and synbiotic through the bio-encapsulation of Artemia sp.," Aquac. Int., vol. 27, no. 2, 2019, doi: 10.1007/s10499-019-00346-w.

C. Zhang, C. Wang, S. Zhao, and Z. Xiu, "Role of c-di-GMP in improving stress resistance of alginate-chitosan microencapsulated Bacillus subtilis cells in simulated digestive fluids," Biotechnol. Lett., vol. 43, no. 3, pp. 677–690, Mar. 2021, doi: 10.1007/s10529-020-03055-0.

Q. Liu et al., "Enhanced crude oil degradation by remodeling of crude oil-contaminated soil microbial community structure using sodium alginate/graphene oxide/Bacillus C5 immobilized pellets," Environ. Res., vol. 223, no. 66, 2023, doi: 10.1016/j.envres.2023.115465.

M. J. Martín, F. Lara-Villoslada, M. A. Ruiz, and M. E. Morales, "Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects," Innov. Food Sci. Emerg. Technol., vol. 27, pp. 15–25, 2015, doi: 10.1016/j.ifset.2014.09.010.

A. F. S. Paulo, T. R. Baú, E. I. Ida, and M. A. Shirai, "Edible coatings and films with incorporation of prebiotics —A review," Food Res. Int., vol. 148, no. March, p. 110629, Oct. 2021, doi: 10.1016/j.foodres.2021.110629.

W. Li, L. Liu, H. Tian, X. Luo, and S. Liu, "Encapsulation of Lactobacillus plantarum in cellulose based microgel with controlled release behavior and increased long-term storage stability," Carbohydr. Polym., vol. 223, Nov. 2019, doi: 10.1016/j.carbpol.2019.115065.

E. Yudiati, A. Isnansetyo, Murwantoko, Triyanto, and C. R. Handayani, "Alginate from Sargassum siliquosum Simultaneously Stimulates Innate Immunity, Upregulates Immune Genes, and Enhances Resistance of Pacific White Shrimp (Litopenaeus vannamei) Against White Spot Syndrome Virus (WSSV)," Mar. Biotechnol., vol. 21, no. 4, pp. 503–514, 2019, doi: 10.1007/s10126-019-09898-7.

C. S. Pakidi, H. Anshary, E. N. Zainuddin, G. Latama, and B. R. Tampangallo, "Survival and morphological performance of Black Tiger Shrimp larvae (Penaeus monodon) after immersion with extract of Sargum duplicatum," IOP Conf. Ser. Earth Environ. Sci., vol. 473, no. 1, p. 011001, Mar. 2020, doi: 10.1088/1755-1315/473/1/011001.

A. Olivares and P. Silva, "Viability dataset on microencapsulated probiotics: Sodium alginate viscosity effect," Data Br., vol. 27, p. 104735, 2019, doi: 10.1016/j.dib.2019.104735.

A. Husni, S. Subaryono, Y. Pranoto, T. Taswir, and U. Ustadi, “Pengembangan Metode Ekstraksi Alginat dari Rumput Laut Sargassum sp. sebagai Bahan Pengental,†agriTECH, vol. 32, no. 1, May 2012, doi: 10.22146/agritech.9649.

S. V. Hindu, S. Thanigaivel, S. Vijayakumar, N. Chandrasekaran, A. Mukherjee, and J. Thomas, "Effect of microencapsulated probiotic Bacillus vireti 01-polysaccharide extract of Gracilaria folifera with alginate-chitosan on immunity, antioxidant activity and disease resistance of Macrobrachium rosenbergii against Aeromonas h," Fish Shellfish Immunol., vol. 73, no. 2018, pp. 112–120, 2018, doi: 10.1016/j.fsi.2017.12.007.

Y. Shafiei, Using Free or Alginate / Resistant Starch Microencapsulated Lactobacillus plantarum. Elsevier Inc., 2018.

M. J. Martin, F. Lara-Villoslada, M. A. Ruiz, and M. E. Morales, "Effect of unmodified starch on viability of alginate-encapsulated Lactobacillus fermentum CECT5716," Lwt, vol. 53, no. 2, pp. 480–486, 2013, doi: 10.1016/j.lwt.2013.03.019.

W. M. Xu, Y. W. Ting, L. X. Dong, H. E. Xin, W. Wei, and M. A. X. Jun, "Chemical Method of breaking the cellloaded sodium alginate/chitosan microcapsules," Chem. J. chinese Univ., vol. 25, no. 7, pp. 1342–1346, 2004.

L. Luca and M. Oroian, "Influence of different prebiotics on viability of Lactobacillus casei, Lactobacillus plantarum and Lactobacillus rhamnosus encapsulated in alginate microcapsules," Foods, vol. 10, no. 4, 2021, doi: 10.3390/foods10040710.

Y. Zhang, P. Zhang, X. Shang, Y. Lu, and Y. Li, "Exposure of lead on intestinal structural integrity and the diversity of gut microbiota of common carp," Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 239, no. August 2020, 2021, doi: 10.1016/j.cbpc.2020.108877.

S. Jantarathin, C. Borompichaichartkul, and R. Sanguandeekul, "Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat process in shrimp feeding," Mater. Today Proc., vol. 4, no. 5, pp. 6166–6172, 2017, doi: 10.1016/j.matpr.2017.06.111.

C. Y. Moon and M. S. Heo, "Characteristics of Probiotics Isolated from Korean Traditional Foods and Antibacterial Activity of Synbiotics," Microbiol. Biotechnol. Lett., vol. 49, no. 4, pp. 552–558, 2021, doi: 10.48022/mbl.2106.06004.

M. C. Tarifa, C. M. Piqueras, D. B. Genovese, and L. I. Brugnoni, "Microencapsulation of Lactobacillus casei and Lactobacillus rhamnosus in pectin and pectin-inulin microgel particles: Effect on bacterial survival under storage conditions," Int. J. Biol. Macromol., vol. 179, pp. 457–465, 2021, doi: 10.1016/j.ijbiomac.2021.03.038.

S. S. Sekhavatizadeh, N. Pourakbar, M. Ganje, S. S. Shekarfroush, and S. Hosseinzadeh, "Physicochemical and sensory properties of probiotic yogurt containing Lactobacillus plantarum ATCC 10241 microencapsulated with okra (Abelmoschus esculentus) mucilage and sodium alginate," Bioact. Carbohydrates Diet. Fibre, vol. 30, p. 100364, Nov. 2023, doi: 10.1016/j.bcdf.2023.100364.

R. Zhang, X. Song, W. Liu, and X. Gao, "Mixed fermentation of Chlorella pyrenoidosa and Bacillus velezensis SW-37 by optimization," Lwt, vol. 175. 2023, doi: 10.1016/j.lwt.2023.114448.

S. Woraharn, C. Chaiyasut, B. Sirithunyalug, and J. Sirithunyalug, "Survival enhancement of probiotic Lactobacillus plantarum CMU-FP002 by granulation and encapsulation techniques," African J. Microbiol. Res., vol. 4, no. 20, pp. 2086–2093, 2010.

T. Y. Sheu and R. T. Marshall, "Microentrapment of Lactobacilli in Calcium Alginate Gels," J. Food Sci., vol. 58, no. 3, pp. 557–561, 1993, doi: 10.1111/j.1365-2621.1993.tb04323.x.

E. Valero-Cases and M. J. Frutos, "Effect of different types of encapsulation on the survival of Lactobacillus plantarum during storage with inulin and in vitro digestion," LWT - Food Sci. Technol., vol. 64, no. 2, pp. 824–828, Dec. 2015, doi: 10.1016/j.lwt.2015.06.049.

S. Jia, K. Zhou, R. Pan, J. Wei, Z. Liu, and Y. Xu, "Oral immunization of carps with chitosan – alginate microcapsule containing probiotic expressing spring viremia of carp virus ( SVCV ) G protein provides effective protection against SVCV infection," Fish Shellfish Immunol., vol. 105, no. May, pp. 327–329, 2020.

H. A. Albadran, A. Chatzifragkou, V. V. Khutoryanskiy, and D. Charalampopoulos, "Stability of probiotic Lactobacillus plantarum in dry microcapsules under accelerated storage conditions," Food Res. Int., vol. 74, pp. 208–216, 2015, doi: 10.1016/j.foodres.2015.05.016.

M. Chávarri, I. Marañón, R. Ares, F. C. Ibáñez, F. Marzo, and M. del C. Villarán, "Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions," Int. J. Food Microbiol., vol. 142, no. 1–2, pp. 185–189, 2010, doi: 10.1016/j.ijfoodmicro.2010.06.022.

W. Zhang et al., "Eco-friendly bio-encapsulation from sodium alginate-trehalose-kaolin and its performance evaluation in improving plant growth under salt or/and drought conditions," Int. J. Biol. Macromol., vol. 225, no. November 2022, pp. 123–134, 2023, doi: 10.1016/j.ijbiomac.2022.12.009.

S. S. Dehkordi, I. Alemzadeh, A. S. Vaziri, and A. Vossoughi, "Optimization of Alginate-Whey Protein Isolate Microcapsules for Survivability and Release Behavior of Probiotic Bacteria," Appl. Biochem. Biotechnol., vol. 190, no. 1, pp. 182–196, 2020, doi: 10.1007/s12010-019-03071-5.

G. Frakolaki et al., "A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods," vol. 8398, no. May, 2020, doi: 10.1080/10408398.2020.1761773.

N. Kusumawati, T. E. W. Widyastuti, and I. Kuswardani, "The ability of alginate matrix containing isomalt as an encapsulated agent to protect Lactobacillus acidophilus FNCC 0051 during storage," Int. Food Res. J., vol. 23, no. 4, pp. 1747–1752, 2016.

E. Triana, E. Yulianto, and N. Nurhidayat, "Viability of encapsulated Lactobacillus sp. Mar 8,†Biodiversitas J. Biol. Divers., vol. 7, no. 2, pp. 114–117, 2006, doi: 10.13057/biodiv/d070204.

A. D. Warth, "Relationship between the heat resistance of spores and the optimum and maximum growth temperatures of Bacillus species," J. Bacteriol., vol. 134, no. 3, pp. 699–705, 1978, doi: 10.1128/jb.134.3.699-705.1978.




DOI: http://dx.doi.org/10.18517/ijaseit.13.6.19056

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development