Comparison of Crossflow Turbine Performance through Nozzle Position Variations Using ANSYS Simulation

Corvis L Rantererung, Atus Buku

Abstract


The performance comparison of Crossflow turbines is greatly influenced by the position of the nozzle in the conversion of water energy into mechanical energy that occurs through the blades, runners, and shafts of Crossflow turbines. The study aims to directly examine the visualization of water fluid dynamics across the turbine runner blade and enhance the performance of the Crossflow turbine by varying the nozzle position. This study intends to investigate the impact of water flow dynamics and emission on the performance of Crossflow turbines with a combined horizontal-vertical nozzle position, specifically focusing on the magnitude of the number of turbine blades driven and the size of the runner blade area. The objective of investigating nozzle position variations in Crossflow turbines is to determine the specific nozzle position at which the turbine blade may efficiently extract maximum energy from the water flow, hence optimizing turbine performance. The research method using models made using CAD software is AutoCAD by exporting to IGES or IGS format to be compatible with ANSYS. The simulation of this research is with post-processing. There are three, namely making animations, making contours, and taking data to compare cross-turbine performance using variations in nozzle position. Crossflow turbine performance with horizontal nozzle position torque and turbine power is lower, and there is an increase in a vertical position. Then, the horizontal and vertical nozzle position is very good because the nozzle is more effective with maximum turbine performance, namely 13.811-watt turbine power 1,099 turbine torque at 120 rpm.

Keywords


Crossflow turbine; turbine performance; nozzle position variation; ANSYS simulation

Full Text:

PDF

References


H. Olgun, “Investigation of the performance of a crossâ€flow turbine,†Int. J. energy Res., vol. 22, no. 11, pp. 953–964, 1998.

S. Chichkhede, V. Verma, V. K. Gaba, and S. Bhowmick, “A simulation based study of flow velocities across cross flow turbine at different nozzle openings,†Procedia Technol., vol. 25, pp. 974–981, 2016.

Z. Chen and Y.-D. Choi, “Influence of air supply on the performance and internal flow characteristics of a cross flow turbine,†Renew. Energy, vol. 79, pp. 103–110, 2015.

M. Naseem, A. Saleem, and M. S. Naseem, “Investigation of blade design parameters for performance improvement of hydraulic cross flow turbine,†Ocean Eng., vol. 257, p. 111663, 2022.

G. Saini, R. P. Saini, and S. K. Singal, “Numerical investigations on performance improvement of cross flow hydro turbine having guide vane mechanism,†Energy Sources, Part A Recover. Util. Environ. Eff., vol. 44, no. 1, pp. 771–795, 2022.

N. Acharya, C.-G. Kim, B. Thapa, and Y.-H. Lee, “Numerical analysis and performance enhancement of a cross-flow hydro turbine,†Renew. energy, vol. 80, pp. 819–826, 2015.

L. C. Rantererung, S. Soeparman, R. Soenoko, and S. Wahyudi, “Improvement Of performance crossflow turbine with dual nozzle,†ARPN J. Eng. Appl. Sci., vol. 13, no. 7, pp. 2364–2368, 2018.

I. A. Legonda, “An Investigation on the Flow Characteristics in the Cross-Flow Turbine-T15 300,†J. Power Energy Eng., vol. 04, no. 09, pp. 52–60, 2016, doi: 10.4236/jpee.2016.49005.

K. Kokubu, T. Kanemoto, S.-W. Son, and Y.-D. Choi, “Performance improvement of a micro eco cross-flow hydro turbine,†J. Adv. Mar. Eng. Technol., vol. 36, no. 7, pp. 902–909, 2012.

R. K. Ranjan, N. Alom, J. Singh, and B. K. Sarkar, “Performance investigations of cross flow hydro turbine with the variation of blade and nozzle entry arc angle,†Energy Convers. Manag., vol. 182, pp. 41–50, 2019.

Y. R. Pasalli and A. B. Rehiara, “Design planning of micro-hydro power plant in hink river,†Procedia Environ. Sci., vol. 20, pp. 55–63, 2014.

A. M. Durrani, O. Mujahid, and M. Uzair, “Micro hydro power plant using sewage water of Hayatabad Peshawar,†in 2019 15th International Conference on Emerging Technologies (ICET), 2019, pp. 1–5.

A. Raza, D. Xu, M. S. Mian, and J. Ahmed, “A micro hydro power plant for distributed generation using municipal water waste with archimedes screw,†in INMIC, 2013, pp. 66–71.

J. Haurissa, S. Wahyudi, Y. S. Irawan, and R. Soenoko, “The cross flow turbine behavior towards the turbine rotation quality, efficiency, and generated power,†J. Appl. Sci. Res., vol. 8, no. 1, pp. 448–453, 2012.

M. A. Khan and S. Badshah, “Research Article Design and Analysis of Cross Flow Turbine for Micro Hydro Power Application using Sewerage Water,†Res. J. Appl. Sci. Eng. Technol., vol. 8, no. 7, pp. 821–828, 2014.

B. Ben Amira, Z. Driss, S. Karray, and M. S. Abid, “PIV study of the down-pitched blade turbine hydrodynamic structure,†in Design and Modeling of Mechanical Systems: Proceedings of the Fifth International Conference Design and Modeling of Mechanical Systems, CMSM´ 2013, Djerba, Tunisia, March 25-27, 2013, 2013, pp. 237–244.

M. Sinagra, V. Sammartano, C. Aricò, A. Collura, and T. Tucciarelli, “Cross-Flow turbine design for variable operating conditions,†Procedia Eng., vol. 70, pp. 1539–1548, 2014.

A. A. Khan, A. Shahzad, I. Hayat, and M. S. Miah, “Recovery of flow conditions for optimum electricity generation through micro hydro turbines,†Renew. Energy, vol. 96, pp. 940–948, 2016.

N. Zdankus, P. Punys, and T. Zdankus, “Conversion of lowland river flow kinetic energy,†Renew. Sustain. Energy Rev., vol. 38, pp. 121–130, 2014.

R. Abdullah and M. Islam, “Case study and model of micro hydro power plant using the kinetic energy of flowing water of Surma and Meghna rivers of Bangladesh,†Int. J. Sci. Technoledge, vol. 2, no. 1, pp. 87–95, 2014.

H. Nautiyal, S. K. Singal, and A. Sharma, “Small hydropower for sustainable energy development in India,†Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2021–2027, 2011.

S. Dudhani, A. K. Sinha, and S. S. Inamdar, “Assessment of small hydropower potential using remote sensing data for sustainable development in India,†Energy Policy, vol. 34, no. 17, pp. 3195–3205, 2006.

D. Kumar and S. S. Katoch, “Small hydropower development in western Himalayas: Strategy for faster implementation,†Renew. Energy, vol. 77, pp. 571–578, 2015.

M. Hossain et al., “A state-of-the-art review of hydropower in Malaysia as renewable energy: Current status and future prospects,†Energy Strateg. Rev., vol. 22, pp. 426–437, 2018.

W. Uddin et al., “Current and future prospects of small hydro power in Pakistan: A survey,†Energy Strateg. Rev., vol. 24, pp. 166–177, 2019.

K. S. Balkhair and K. U. Rahman, “Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale,†Appl. Energy, vol. 188, pp. 378–391, 2017.

N. F. Yah, A. N. Oumer, and M. S. Idris, “Small scale hydro-power as a source of renewable energy in Malaysia: A review,†Renew. Sustain. Energy Rev., vol. 72, pp. 228–239, 2017.

M. K. Mishra, N. Khare, and A. B. Agrawal, “Small hydro power in India: Current status and future perspectives,†Renew. Sustain. energy Rev., vol. 51, pp. 101–115, 2015.

P. Gokhale et al., “A review on micro hydropower in Indonesia,†Energy Procedia, vol. 110, pp. 316–321, 2017.

C. P. Jawahar and P. A. Michael, “A review on turbines for micro hydro power plant,†Renew. Sustain. Energy Rev., vol. 72, pp. 882–887, 2017.

C. S. Kaunda, C. Z. Kimambo, and T. K. Nielsen, “A technical discussion on microhydropower technology and its turbines,†Renew. Sustain. Energy Rev., vol. 35, pp. 445–459, 2014.

A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and H. M. Shabara, “Operation, performance and economic analysis of low head micro-hydropower turbines for rural and remote areas: A review,†Renew. Sustain. Energy Rev., vol. 43, pp. 40–50, 2015.

B. A. Nasir, “Design considerations of micro-hydro-electric power plant,†Energy procedia, vol. 50, pp. 19–29, 2014.

S. Nababan, E. Muljadi, and F. Blaabjerg, “An overview of power topologies for micro-hydro turbines,†in 2012 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2012, pp. 737–744.

M. Mohibullah, A. M. Radzi, and M. I. A. Hakim, “Basic design aspects of micro hydro power plant and its potential development in Malaysia,†in PECon 2004. Proceedings. National Power and Energy Conference, 2004., 2004, pp. 220–223.

A. A. Williams, “Pumps as turbines for low cost micro hydro power,†Renew. Energy, vol. 9, no. 1–4, pp. 1227–1234, 1996.

J. M. R. Gorle, L. Chatellier, F. Pons, and M. Ba, “Modulated circulation control around the blades of a vertical axis hydrokinetic turbine for flow control and improved performance,†Renew. Sustain. Energy Rev., vol. 105, pp. 363–377, 2019.

M. Ali Kamran and S. Manzoor, “Effect of nozzle angle, turbine inlets and mass flow rate on the performance of a bladeless turbine,†Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 234, no. 8, pp. 1101–1107, 2020.

X. Wu, H. Wu, L. Zuo, and B. Chen, “The effect of the blade number on a cross-flow hydrokinetic turbine,†IFAC-PapersOnLine, vol. 55, no. 27, pp. 62–67, 2022.

N. C. V Monintja, R. Soenoko, S. Wahyudi, and Y. S. Irawan, “The influence of flow steering angle on the performance of a cup-bladed kinetic turbine,†Int. J. Appl. Eng. Res., vol. 9, no. 20, pp. 7481–7489, 2014.

V. K. Yadav and S. K. Singal, “Performance analysis of cross-flow turbine: Variation in shaft diameter,†in Development of Water Resources in India, 2017, pp. 487–497.

L. C. Rantererung, S. Soeparman, R. Soenoko, and S. Wahyudi, “Dual nozzle crossflow turbine as an electrical power generation,†ARPN J. Eng. Appl. Sci., vol. 11, no. 1, pp. 15–19, 2016.

A. H. Elbatran, O. B. Yaakob, Y. M. Ahmed, and M. R. Jalal, “Novel approach of bidirectional diffuser-augmented channels system for enhancing hydrokinetic power generation in channels,†Renew. Energy, vol. 83, pp. 809–819, 2015.

K. W. Tan, B. Kirke, and M. Anyi, “Small-scale hydrokinetic turbines for remote community electrification,†Energy Sustain. Dev., vol. 63, pp. 41–50, 2021.

A. H. A. Elbatran, O. B. Yaakob, and Y. M. Ahmed, “Experimental Investigation of a Hydraulic Turbine for Hydrokinetic Power Generation in Irrigation/Rainfall Channels,†J. Mar. Sci. Appl., vol. 20, pp. 144–155, 2021.

R. Soenoko and S. Rispiningtati, “Prototype of a Twin Kinetic Turbine Performance as a Rural Electrical Power Generation,†J. Basic Appl. Sci. Res., vol. 1, no. 10, pp. 1686–1690, 2011.

A. O. Onokwai, H. I. Owamah, M. O. Ibiwoye, G. C. Ayuba, and O. A. Olayemi, “Application of response surface methodology (RSM) for the optimization of energy generation from Jebba hydro-power plant, Nigeria,†ISH J. Hydraul. Eng., vol. 28, no. 1, pp. 1–9, 2022.

K. A. Lempoy, R. Soenoko, S. Wahyudi, and M. A. Choiron, “Response Surface Methodology (RSM) Application toward the Performance of a Vertical Shaft Hinged Arc Blade Kinetic Turbine,†J. Eng. Sci. Technol., vol. 12, no. 8, pp. 2175–2186, 2017.

N. C. V Monintja, R. Soenoko, S. Wahyudi, and Y. S. Irawan, “The vertical shaft kinetic turbine optimization using response surface methodology,†Int. J. Appl. Eng. Res., vol. 9, no. 21, pp. 8841–8856, 2014.

A. Tahir, M. Elgabaili, Z. Rajab, N. Buaossa, A. Khalil, and F. Mohamed, “Optimization of small wind turbine blades using improved blade element momentum theory,†Wind Eng., vol. 43, no. 3, pp. 299–310, 2019.

A. Abutunis, R. Hussein, and K. Chandrashekhara, “A neural network approach to enhance blade element momentum theory performance for horizontal axis hydrokinetic turbine application,†Renew. Energy, vol. 136, pp. 1281–1293, 2019.

E. Tengs, P.-T. Storli, and M. Holst, “Optimization procedure for variable speed turbine design,†Eng. Appl. Comput. Fluid Mech., vol. 12, no. 1, pp. 652–661, 2018.

N. H. C. Pereira and J. E. Borges, “Study of the nozzle flow in a cross-flow turbine,†Int. J. Mech. Sci., vol. 38, no. 3, pp. 283–302, 1996.

O. Gusak, M. Cherkashenko, O. Potetenko, A. Hasiuk, and K. Rezvaya, “Improvement of operating processes of high-head tubular horizontal hydraulic turbines,†in Design, Simulation, Manufacturing: The Innovation Exchange, Springer, 2021, pp. 126–136.

D. Sutikno, R. Soenoko, S. Soeparman, and S. Wahyudi, “Flow visualization of water jet passing through the empty space of cross-flow turbine runner,†ВоÑточно-ЕвропейÑкий журнал передовых технологий, no. 3 (8), pp. 36–42, 2019.

K. A. Lempoy, R. Soenoko, S. Wahyudi, and M. A. Choiron, “Movable blade vertical shaft kinetic turbine visual observation,†ВоÑточно-ЕвропейÑкий журнал передовых технологий, no. 2 (8), pp. 23–30, 2019.

Wikipedia, “Cross-flow turbine,†2023. https://en.wikipedia.org/wiki/Cross-flow_turbine.

M. Anyi and B. Kirke, “Evaluation of small axial flow hydrokinetic turbines for remote communities,†Energy Sustain. Dev., vol. 14, no. 2, pp. 110–116, 2010.

F. Bottiglione, S. De Pinto, and G. Mantriota, “Infinitely Variable Transmissions in neutral gear: Torque ratio and power re-circulation,†Mech. Mach. Theory, vol. 74, pp. 285–298, 2014.

V. Sammartano, G. Morreale, M. Sinagra, and T. Tucciarelli, “Numerical and experimental investigation of a cross-flow water turbine,†J. Hydraul. Res., vol. 54, no. 3, pp. 321–331, 2016.




DOI: http://dx.doi.org/10.18517/ijaseit.13.6.19054

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development