Non-Uniformity of Non-Thermal Plasma Formation: Using FBG as Temperature Sensors

Siti Musliha Aishah Musa, Asrul Izam Azmi, Siti Azlida Ibrahim, Raja Kamarulzaman Raja Ibrahim

Abstract


This research investigates fiber Bragg grating (FBG) temperature sensing performance in monitoring non—uniformity of non-thermal plasma (NTP) formation in a packed-bed reactor using FBG operating at atmospheric pressure. Two FBGs made from germanium doped fiber were embedded inside and outside the PBNTP reactor to allow for comparison between the temperatures inside and outside of the reactor to be made. Each FBG comes with three grating series, which allow the reactor temperatures at three different locations inside or outside the reactor to be measured and compared. Two types of plasma, namely nitrogen (N2) and argon (Ar) were generated in the reactor at a gas flow rate in the range of 2 - 7 L/min and applied voltage in the range of l - 20 kV. It was found that the PBNTP reactor temperature varies up to 20 oC at different positions inside and up to 40 oC outside of the reactor. This finding shows the non-uniformity of plasma formation and the nature of the plasma's localized thermodynamic equilibrium (LTE). The sensitivity of the FBG temperature sensor used in this study is estimated at 10.36 - 10.50 pm/oC.

Keywords


Fiber Bragg grating (FBG); temperature; fiber optic sensor; non-thermal plasma (NTP)

Full Text:

PDF

References


A. Othonos, K. Kalli, and G. E. Kohnke, “Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing,†Phys Today, vol. 53, no. 5, pp. 61–62, May 2000, doi: 10.1063/1.883086.

S. Daud, M. A. Jalil, S. Najmee, S. Saktioto, J. Ali, and P. P. Yupapin, “Development of FBG sensing system for outdoor temperature environment,†in Procedia Engineering, 2011, pp. 386–392. doi: 10.1016/j.proeng.2011.03.071.

A. L. Voloshina, A. A. Dmitriev, S. V. Varzhel, and V. A. Kulikova, “Development and investigation of the sensitive element of the amplitude fiber-optic temperature sensor based on superimposed chirped Bragg gratings,†Optical Fiber Technology, vol. 75, Jan. 2023, doi: 10.1016/j.yofte.2022.103175.

H. Wang et al., “Fast response characteristics of fiber Bragg grating temperature sensors and explosion temperature measurement tests,†Sens Actuators A Phys, vol. 354, May 2023, doi: 10.1016/j.sna.2023.114236.

G. Cazzulani, S. Cinquemani, L. Comolli, A. Gardella, and F. Resta, “Vibration control of smart structures using an array of Fiber Bragg Grating sensors,†Mechatronics, vol. 24, no. 4, pp. 345–353, 2014, doi: 10.1016/j.mechatronics.2013.07.014.

Z. Jia et al., “A two-dimensional cantilever beam vibration sensor based on fiber Bragg Grating,†Optical Fiber Technology, vol. 61, Jan. 2021, doi: 10.1016/j.yofte.2020.102447.

Q. Shu, L. Wu, S. Lu, and W. Xiao, “High-sensitivity structure based on fiber Bragg grating sensor and its application in nonintrusive detection of pipeline pressure change,†Measurement (Lond), vol. 189, Feb. 2022, doi: 10.1016/j.measurement.2021.110444.

A. F. Stephens, A. Busch, R. F. Salamonsen, S. D. Gregory, and G. D. Tansley, “A novel fibre Bragg grating pressure sensor for rotary ventricular assist devices,†Sens Actuators A Phys, vol. 295, pp. 474–482, Aug. 2019, doi: 10.1016/j.sna.2019.06.028.

H. Kumar, M. N. Sreerangaraju, and P. Sharan, “Characterization of Hydroacoustic Optical Fibre Bragg Grating Pressure Sensor Using Different Materials,†Results in Optics, vol. 2, Jan. 2021, doi: 10.1016/j.rio.2020.100037.

F. Mashayekhi, J. Bardon, Y. Koutsawa, S. Westermann, and F. Addiego, “Methods for embedding fiber Bragg grating sensors during material extrusion: relationship between the interfacial bonding and strain transfer,†Addit Manuf, p. 103497, Apr. 2023, doi: 10.1016/j.addma.2023.103497.

W. Li, S. Chen, Y. Chu, P. Huang, and G. Yan, “Wide-range fiber Bragg grating strain sensor for load testing of aircraft landing gears,†Optik (Stuttg), vol. 262, Jul. 2022, doi: 10.1016/j.ijleo.2022.169290.

Z. Zhou, J. He, Y. Zhang, J. Yu, and S. Zhang, “Development and performance study of fiber Bragg grating flexible cable strain sensor,†Optik (Stuttg), vol. 273, Feb. 2023, doi: 10.1016/j.ijleo.2023.170505.

F. Yu, Z. Li, and Y. Okabe, “Application of a remotely bonded fiber-optic Bragg grating sensor to acoustic emission testing for a carbon-carbon composite at a temperature of 1000 °C,†Measurement (Lond), vol. 203, Nov. 2022, doi: 10.1016/j.measurement.2022.111908.

F. Yu and Y. Okabe, “Linear damage localization in CFRP laminates using one single fiber-optic Bragg grating acoustic emission sensor,†Compos Struct, vol. 238, Apr. 2020, doi: 10.1016/j.compstruct.2020.111992.

R. Montanini and S. Pirrotta, “A temperature-compensated rotational position sensor based on fibre Bragg gratings,†Sens Actuators A Phys, vol. 132, no. 2, pp. 533–540, Nov. 2006, doi: 10.1016/j.sna.2006.02.036.

Sheng Kai Lin et al., “The Fabricating the UV polymer Bragg grating on the D- shaped fiber,†in 2010 International Conference on Optics, Photonics and Energy Engineering, Institute of Electrical and Electronic Engineers, 2010, pp. 14–17.

Ming Fu Zhao, Shao Fei Wang, Bin Bin Luo, Nian Bing Zhong, and Xue Mei Cao, “Theoretical study on the cross sensitivity of fiber Bragg grating sensor affected by temperature and transverse pressure,†in 2010 Symposium on Photonics and Optoelectronics, IEEE, 2010, pp. 1–4.

A. Morana et al., “Radiation Effects on Fiber Bragg Gratings: Vulnerability and Hardening Studies,†Sensors, vol. 22, no. 21. MDPI, Nov. 01, 2022. doi: 10.3390/s22218175.

H. A. Gabbar and Y. Elsayed, “Application of Fiber Bragg Gating (FBG) Sensing Technologies in Power Systems,†IEEE Smart Grid, pp. 1–7, 2021. [Online]. Available: https://www.researchgate.net/publication/356083993

J. Canning et al., “Optical fibre Bragg gratings for high temperature sensing,†in 20th International Conference on Optical Fibre Sensors, SPIE, Oct. 2009, p. 75032N. doi: 10.1117/12.834470.

J. He et al., “Stabilized Ultra-High-Temperature Sensors Based on Inert Gas-Sealed Sapphire Fiber Bragg Gratings,†ACS Applied Materials & Interfaces, vol. 14, no. 10, pp. 12359–12366, Feb. 2022, doi: 10.1021/acsami.1c24589.

L. Q. Yu, A. I. Azmi, S. M. A. Musa, and R. K. R. Ibrahim, “Application of packaging technique in Fiber Bragg Grating temperature sensor for measuring localized and nonuniform temperature distribution,†Jurnal Teknologi (Sciences and Engineering), vol. 64, no. 3, 2013, doi: 10.11113/jt.v64.2084.

W. Mista and R. Kacprzyk, “Decomposition of toluene using non-thermal plasma reactor at room temperature,†Catal Today, vol. 137, no. 2–4, pp. 345–349, Sep. 2008, doi: 10.1016/j.cattod.2008.02.009.

S. K. P. Veerapandian, N. De Geyter, J. M. Giraudon, J. F. Lamonier, and R. Morent, “The use of zeolites for VOCs abatement by combining non-thermal plasma, adsorption, and/or catalysis: A review,†Catalysts, vol. 9, no. 1. MDPI, Jan. 01, 2019. doi: 10.3390/catal9010098.

A. Nasonova, H. C. Pham, D. J. Kim, and K. S. Kim, “NO and SO2 removal in non-thermal plasma reactor packed with glass beads-TiO2 thin film coated by PCVD process,†Chemical Engineering Journal, vol. 156, no. 3, pp. 557–561, Feb. 2010, doi: 10.1016/j.cej.2009.04.037.

A. Iadicicco, S. Campopiano, A. Cutolo, M. Giordano, and A. Cusano, “Self temperature referenced refractive index sensor by non-uniform thinned fiber Bragg gratings,†Sens Actuators B Chem, vol. 120, no. 1, pp. 231–237, Dec. 2006, doi: 10.1016/j.snb.2006.02.027.

T. Kuwahara, T. Kuroki, K. Yoshida, N. Saeki, and M. Okubo, “Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge,†in Thin Solid Films, Nov. 2012, pp. 2–5. doi: 10.1016/j.tsf.2012.05.064.

N. N. Misra, S. K. Pankaj, T. Walsh, F. O’Regan, P. Bourke, and P. J. Cullen, “In-package nonthermal plasma degradation of pesticides on fresh produce,†J Hazard Mater, vol. 271, pp. 33–40, 2014, doi: 10.1016/j.jhazmat.2014.02.005.

N. Z. R, R. K. R. Ibrahimb, S. M. A. Musa, R. H. S, A. I. Azmi, and N. Ahmad, “Reactor temperature profiles of non-thermal plasma reactor using fiber Bragg grating sensor,†Sensors and Actuators A, vol. 244, pp. 206–212, 2016, doi: 10.1016/j.sna.2016.04.015.

V. Nehra, A. Kumar, and H K Dwivedi, “Atmospheric Non-Thermal Plasma Sources,†in International Journal of Engineering, 2008, pp. 53–68.

J. P. Boeuf, L. C. Pitchford, A. Fiala, and P. Belenguer, “Modelling of discharges and non-thermal plasmas-applications to plasma processing,†Surf Coat Technol, vol. 59, pp. 32–40, 1993.

Sameer U. Kalghatgi, Gregory Fridman, Alexander Fridman, Gary Friedman, and Alisa Morss Clyne, “Non-Thermal Dielectric Barrier Discharge Plasma Treatment of Endothelial Cells,†in 30th Annual International IEEE EMBS Conference, I E E E, 2008, pp. 3578–3581.

S. Li, X. Dang, X. Yu, G. Abbas, Q. Zhang, and L. Cao, “The application of dielectric barrier discharge non-thermal plasma in VOCs abatement: A review,†Chemical Engineering Journal, vol. 388. Elsevier B.V., May 15, 2020. doi: 10.1016/j.cej.2020.124275.

J. Zhang, T. Kwon, S. Kim, and D. Jeong, “Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens,†Plasma, vol. 1, no. 2, pp. 285–296, Dec. 2018, doi: 10.3390/plasma1020025.

Q. Wei, J. Mei, and J. Xie, “Application of electron beam irradiation as a non-thermal technology in seafood preservation,†LWT, vol. 169. Academic Press, Nov. 01, 2022. doi: 10.1016/j.lwt.2022.113994.

H. M. Valencia, F. B. Yousif, A. Robledo-Martínez, and F. C. Mejia, “Optical and electrical characteristics of AC glow-discharge plasma in N2O,†IEEE Transactions on Plasma Science, vol. 34, no. 4 III, pp. 1497–1502, Aug. 2006, doi: 10.1109/TPS.2006.877251.

K. Matsumoto, “Plasma production by multi-phase AC glow discharge at the frequency of a commercial electric power system,†1996. [Online]. Available: http://iopscience.iop.org/0963-0252/5/2/018

T. Hammer, “Atmospheric Pressure Plasma Application for Pollution Control in Industrial Processes,†Contributions to Plasma Physics, vol. 54, no. 2, pp. 187–201, Feb. 2014, doi: 10.1002/ctpp.201310063.

D. H. Kim, Y. S. Mok, and S. B. Lee, “Effect of temperature on the decomposition of trifluoromethane in a dielectric barrier discharge reactor,†in Thin Solid Films, Aug. 2011, pp. 6960–6963. doi: 10.1016/j.tsf.2010.11.060.

J. S. Kim, E. J. Lee, E. H. Choi, and Y. J. Kim, “Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment,†Innovative Food Science and Emerging Technologies, vol. 22, pp. 124–130, 2014, doi: 10.1016/j.ifset.2013.12.012.

A. Fridman, S. Nester, L. A. Kennedy, A. Saveliev, and O. Mutaf-Yardimci, “Gliding Arc Discharge ( GAD ) Experiment,†Prog Energy Combust Sci, vol. 25, pp. 211–231, 1999.

C.-J. Liu, G.-H. Xu, and T. Wang, “Non-thermal plasma approaches in CO utilization,†Fuel Processing Technology, vol. 58, pp. 119–134, 1999.

Raja Kamarulzaman Raja Ibrahim, “Mid-Infrared Diagnostics of the Gas Phase in Non-Thermal Plasma Application,†2011.

U. Roland, F. Holzer, and F.-D. Kopinke, “Improved oxidation of air pollutants in a non-thermal plasma,†Catal Today, vol. 73, pp. 315–323, 2002.

H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, “Review of packed-bed plasma reactor for ozone generation and air pollution control,†Ind Eng Chem Res, vol. 47, no. 7, pp. 2122–2130, Apr. 2008, doi: 10.1021/ie071411s.

Bowei Zhang and M. Kahrizi, “Characteristics of fiber Bragg grating temperature sensor at elevated temperatures,†in 2005 International Conference on MEMS,NANO and Smart Systems, IEEE, pp. 241–246. doi: 10.1109/ICMENS.2005.33.

J. Xiong et al., “Spectral Splitting Sensing Using Optical Fiber Bragg Grating for Spacecraft Lateral Stress Health Monitoring,†Applied Sciences, vol. 13, no. 7, p. 4161, Mar. 2023, doi: 10.3390/app13074161.

R. Kashyap, “Introduction,†in Fiber Bragg Gratings, Elsevier, 2010, pp. 1–13. doi: 10.1016/B978-0-12-372579-0.00001-6.

C. G. Askins and M. A. Putnam, “Photodarkening and photobleaching in fiber optic Bragg gratings,†Journal of Lightwave Technology, vol. 15, no. 8, pp. 1363–1370, 1997, doi: 10.1109/50.618343.

J. Fiebrandt, S. Jetschke, M. Leich, M. Rothhardt, and H. Bartelt, “UV-induced photodarkening and photobleaching in UV-femtosecond-pulse-written fibre Bragg gratings,†Laser Phys Lett, vol. 10, no. 8, p. 085102, Aug. 2013, doi: 10.1088/1612-2011/10/8/085102.




DOI: http://dx.doi.org/10.18517/ijaseit.13.5.19041

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development