Addition of Cd2+ Metal Ions to Conway Culture Medium on Phytoplankton Growth of Chaetoceros calcitrans

Andi Makkasau, Erma Suryani Sahabuddin

Abstract


The main objective of this study is to examine the impact of Cd2+ metal ions on the growth of marine phytoplankton, specifically focusing on their potential as agents for phytoremediation in marine settings affected by heavy metal pollution. In this study, the behavior of Cd2+ metal ions added to the culture medium in phytoplankton type of Chaetoceros Calcitrans In the culture medium, an investigation was conducted on a series of Chaetoceros Calcitrans cultures, comparing those including and not including the Cd2+ metal ions’ addition. Observations were made on the growth pattern of Chaetoceros Calcitrans. To assess the impact of introducing Cd2+ metal ions into the Conway culture media, various metrics such as definite growth rate, growth inhibition percentage, and test of toxicity were employed. The findings indicated that the growth trajectory of Chaetoceros Calcitrans in the Conway medium, in the absence of Cd2+ metal ions as a control group, exhibited the most substantial growth curve. The growth patterns observed in the culture medium upon the addition of Cd2+ metal ions at a concentration of 0.1 mg/L were found to be comparable to those observed in the samples of control group. Adding Cd2+ metal ions at concentrations exceeding 0.1 mg/L has decreased the inhibited growth rate of Chaetoceros Calcitrans. The concurrent increase in PGI costs further exacerbates this effect. The findings from the statistical analysis of difference tests conducted on blanks investigating the impact of introducing Cd2+ metal ions to Chaetoceros Calcitrans suggest that concentrations ranging from 0.01 to 0.10 ppm of Cd2+ metal ions have no discernible effect on the growth of Chaetoceros Calcitrans. Furthermore, the highest concentration of Cd2+ metal ions that Chaetoceros Calcitrans can withstand is 0.10 ppm, with an EC50 value of 6.13 ppm.

Keywords


Chaetoceros Calcitrans; Cd2+ metal ion; inhibited growth rate

Full Text:

PDF

References


X. Sun et al., “Coupling ecological concepts with an ocean-colour model: Phytoplankton size structure,†Remote Sens. Environ., vol. 285, p. 113415, Feb. 2023, doi: 10.1016/j.rse.2022.113415.

F. Mattei and M. Scardi, “Embedding ecological knowledge into artificial neural network training: A marine phytoplankton primary production model case study,†Ecol. Modell., vol. 421, p. 108985, 2020.

F. Mattei, E. Buonocore, P. P. Franzese, and M. Scardi, “Global assessment of marine phytoplankton primary production: integrating machine learning and environmental accounting models,†Ecol. Modell., vol. 451, p. 109578, 2021.

K. W. McMahon, W. G. Ambrose, M. J. Reynolds, B. J. Johnson, A. Whiting, and L. M. Clough, “Arctic lagoon and nearshore food webs: Relative contributions of terrestrial organic matter, phytoplankton, and phytobenthos vary with consumer foraging dynamics,†Estuar. Coast. Shelf Sci., vol. 257, p. 107388, Aug. 2021, doi: 10.1016/j.ecss.2021.107388.

M. Abdou et al., “Short-term variations of platinum concentrations in contrasting coastal environments: the role of primary producers,†Mar. Chem., vol. 222, p. 103782, 2020.

X. Zheng, S. Como, L. Huang, and P. Magni, “Temporal changes of a food web structure driven by different primary producers in a subtropical eutrophic lagoon,†Mar. Environ. Res., vol. 161, p. 105128, 2020.

W. Wang, H. Gao, S. Jin, R. Li, and G. Na, “The ecotoxicological effects of microplastics on aquatic food web, from primary producer to human: A review,†Ecotoxicol. Environ. Saf., vol. 173, pp. 110–117, May 2019, doi: 10.1016/j.ecoenv.2019.01.113.

B. K. Maulood and F. M. Hassan, “Phytoplankton and Primary Production in Iraqi Marshes,†in Southern Iraq’s Marshes: Their Environment and Conservation, Springer, 2021, pp. 217–231.

H. P. Vu, L. N. Nguyen, J. Zdarta, T. T. V Nga, and L. D. Nghiem, “Blue-green algae in surface water: problems and opportunities,†Curr. Pollut. reports, vol. 6, pp. 105–122, 2020.

C. R. Steadman, “Epigenetics in Algae,†in Epigenetics in Aquaculture, Wiley, 2023, pp. 383–411.

G. Yang, A. Atkinson, E. A. Pakhomov, S. L. Hill, and M. Racault, “Massive circumpolar biomass of Southern Ocean zooplankton: Implications for food web structure, carbon export, and marine spatial planning,†Limnol. Oceanogr., vol. 67, no. 11, pp. 2516–2530, 2022.

L. Naselli-Flores and J. Padisák, “Ecosystem services provided by marine and freshwater phytoplankton,†Hydrobiologia, vol. 850, no. 12–13, pp. 2691–2706, 2023.

L. Gilbert, T. Jeanniard-du-Dot, M. Authier, T. Chouvelon, and J. Spitz, “Composition of cetacean communities worldwide shapes their contribution to ocean nutrient cycling,†Nat. Commun., vol. 14, no. 1, p. 5823, 2023.

S. V Prants, “Marine life at Lagrangian fronts,†Prog. Oceanogr., vol. 204, p. 102790, 2022.

J. L. Rodrigues-Filho et al., “From ecological functions to ecosystem services: linking coastal lagoons biodiversity with human well-being,†Hydrobiologia, vol. 850, no. 12–13, pp. 2611–2653, Jul. 2023, doi: 10.1007/s10750-023-05171-0.

A. Fernández-Alías et al., “Nutrient overload promotes the transition from top-down to bottom-up control and triggers dystrophic crises in a Mediterranean coastal lagoon,†Sci. Total Environ., vol. 846, p. 157388, 2022.

S. C. Akagha, D. I. Nwankwo, and K. Yin, “Dynamics of nutrient and phytoplankton in Epe Lagoon, Nigeria: possible causes and consequences of reoccurring cyanobacterial blooms,†Appl. Water Sci., vol. 10, no. 5, pp. 1–16, 2020.

L. C. Thomas, T. Sathish, and K. B. Padmakumar, “Harmful Algal Blooms: An Ecological Perspective and Its Implications to Productivity Patterns in Tropical Oceans,†in Dynamics of Planktonic Primary Productivity in the Indian Ocean, Cham: Springer International Publishing, 2023, pp. 301–341.

R. Y. Setiawan, A. Wirasatriya, U. Hernawan, S. Leung, and I. Iskandar, “Spatio-temporal variability of surface chlorophyll-a in the Halmahera Sea and its relation to ENSO and the Indian Ocean Dipole,†Int. J. Remote Sens., vol. 41, no. 1, pp. 284–299, Jan. 2020, doi: 10.1080/01431161.2019.1641244.

R. K. Naik, M. M. Naik, P. M. D’Costa, and F. Shaikh, “Microplastics in ballast water as an emerging source and vector for harmful chemicals, antibiotics, metals, bacterial pathogens and HAB species: A potential risk to the marine environment and human health,†Mar. Pollut. Bull., vol. 149, p. 110525, 2019.

A. D. Turner, A. M. Lewis, K. Bradley, and B. H. Maskrey, “Marine invertebrate interactions with harmful algal blooms–implications for one health,†J. Invertebr. Pathol., vol. 186, p. 107555, 2021.

A. Zingone et al., “Toxic marine microalgae and noxious blooms in the Mediterranean Sea: A contribution to the Global HAB Status Report,†Harmful Algae, vol. 102, p. 101843, 2021.

H. Mohan, S. Vadivel, and S. Rajendran, “Removal of harmful algae in natural water by semiconductor photocatalysis- A critical review,†Chemosphere, vol. 302, p. 134827, Sep. 2022, doi: 10.1016/j.chemosphere.2022.134827.

J. N. Hitchcock, “Microplastics can alter phytoplankton community composition,†Sci. Total Environ., vol. 819, p. 153074, 2022.

E. L. Jensen, R. Clement, A. Kosta, S. C. Maberly, and B. Gontero, “A new widespread subclass of carbonic anhydrase in marine phytoplankton,†ISME J., vol. 13, no. 8, pp. 2094–2106, 2019.

J. Zaiss, P. W. Boyd, S. C. Doney, J. N. Havenhand, and N. M. Levine, “Impact of Lagrangian Sea surface temperature variability on Southern Ocean phytoplankton community growth rates,†Global Biogeochem. Cycles, vol. 35, no. 8, p. e2020GB006880, 2021.

K. Matsumoto, T. Tanioka, and R. Rickaby, “Linkages between dynamic phytoplankton C: N: P and the ocean carbon cycle under climate change,†Oceanography, vol. 33, no. 2, pp. 44–52, 2020.

E. Lengyel, S. Barreto, J. Padisák, C. Stenger-Kovacs, D. Lázár, and K. Buczkó, “Contribution of silica-scaled chrysophytes to ecosystems services: a review,†Hydrobiologia, vol. 850, no. 12, pp. 2735–2756, 2023.

B. M. Oliveira, R. Boumans, B. D. Fath, and J. Harari, “Socio-ecological systems modelling of coastal urban area under a changing climate–Case study for Ubatuba, Brazil,†Ecol. Modell., vol. 468, p. 109953, 2022.

S. M. Aly et al., “Comprehensive analysis of Vibrio alginolyticus : Environmental risk factors in the cultured Gilthead seabream ( Sparus aurata ) under seasonal fluctuations and water parameter alterations,†J. Fish Dis., Sep. 2023, doi: 10.1111/jfd.13860.

Y. Lu et al., “Vertical distribution rules and factors influencing phytoplankton in front of a drinking water reservoir outlet,†Sci. Total Environ., vol. 902, p. 166512, 2023.

W. Xiong et al., “Zooplankton biodiversity monitoring in polluted freshwater ecosystems: A technical review,†Environ. Sci. Ecotechnology, vol. 1, p. 100008, Jan. 2020, doi: 10.1016/j.ese.2019.100008.

B. Abirami, M. Radhakrishnan, S. Kumaran, and A. Wilson, “Impacts of global warming on marine microbial communities,†Sci. Total Environ., vol. 791, p. 147905, Oct. 2021, doi: 10.1016/j.scitotenv.2021.147905.

S. Lomartire, J. C. Marques, and A. M. M. Gonçalves, “The key role of zooplankton in ecosystem services: A perspective of interaction between zooplankton and fish recruitment,†Ecol. Indic., vol. 129, p. 107867, 2021.

M. J. Young, F. Feyrer, P. R. Stumpner, V. Larwood, O. Patton, and L. R. Brown, “Hydrodynamics drive pelagic communities and food web structure in a tidal environment,†Int. Rev. Hydrobiol., vol. 106, no. 2, pp. 69–85, May 2021, doi: 10.1002/iroh.202002063.

B. Bai, F. Bai, X. Li, Q. Nie, X. Jia, and H. Wu, “The remediation efficiency of heavy metal pollutants in water by industrial red mud particle waste,†Environ. Technol. Innov., vol. 28, p. 102944, 2022.

L. S. Miranda, G. A. Ayoko, P. Egodawatta, and A. Goonetilleke, “Adsorption-desorption behavior of heavy metals in aquatic environments: Influence of sediment, water and metal ionic properties,†J. Hazard. Mater., vol. 421, p. 126743, 2022.

K. H. Vardhan, P. S. Kumar, and R. C. Panda, “A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives,†J. Mol. Liq., vol. 290, p. 111197, 2019.

T. A. Saleh, M. Mustaqeem, and M. Khaled, “Water treatment technologies in removing heavy metal ions from wastewater: A review,†Environ. Nanotechnology, Monit. Manag., vol. 17, p. 100617, May 2022, doi: 10.1016/j.enmm.2021.100617.

S. Garg and M. Gauns, “Marine environmental chemistry and ecotoxicology of heavy metals,†in Metals in Water, Elsevier, 2023, pp. 195–211.

M. T. Hayat, M. Nauman, N. Nazir, S. Ali, and N. Bangash, “Environmental hazards of cadmium: past, present, and future,†in Cadmium toxicity and tolerance in plants, Elsevier, 2019, pp. 163–183.

M. R. Rahimzadeh, M. R. Rahimzadeh, S. Kazemi, and A. Moghadamnia, “Cadmium toxicity and treatment: An update,†Casp. J. Intern. Med., vol. 8, no. 3, p. 135, 2017.

I. Suhani, S. Sahab, V. Srivastava, and R. P. Singh, “Impact of cadmium pollution on food safety and human health,†Curr. Opin. Toxicol., vol. 27, pp. 1–7, Sep. 2021, doi: 10.1016/j.cotox.2021.04.004.

O. Gyamfi et al., “A systematic review of heavy metals contamination in cosmetics,†Cutan. Ocul. Toxicol., pp. 1–8, Nov. 2023, doi: 10.1080/15569527.2023.2268197.

S. Annar, “The characteristics, toxicity and effects of heavy metals arsenic, mercury and cadmium: a review,†Peer Rev. Ref. J., vol. 3, no. 4, 2022.

S. P. Tembhare, D. P. Barai, B. A. Bhanvase, and M. Y. Salunkhe, “Nanocomposite membranes for heavy metal removal,†in Handbook of Nanomaterials for Wastewater Treatment, Elsevier, 2021, pp. 575–603.

S. Dutta, A. K. Singh, B. Paul, and M. K. Paswan, “Machining of shape-memory alloys using electrical discharge machining with an elaborate study of optimization approaches: a review,†J. Brazilian Soc. Mech. Sci. Eng., vol. 44, no. 11, p. 557, Nov. 2022, doi: 10.1007/s40430-022-03826-y.

J. Khatun, A. Intekhab, and D. Dhak, “Effect of uncontrolled fertilization and heavy metal toxicity associated with arsenic(As), lead(Pb) and cadmium (Cd), and possible remediation,†Toxicology, vol. 477, p. 153274, Jul. 2022, doi: 10.1016/j.tox.2022.153274.

H. Ghorbanfekr-Kalashami, K. S. Vasu, R. R. Nair, F. M. Peeters, and M. Neek-Amal, “Dependence of the shape of graphene nanobubbles on trapped substance,†Nat. Commun., vol. 8, no. 1, p. 15844, Jun. 2017, doi: 10.1038/ncomms15844.

P. Lazo et al., The Evaluation of Air Quality in Albania by Moss Biomonitoring and Metals Atmospheric Deposition. Cham: Springer International Publishing, 2021.

M. Assefi, S. Maroufi, Y. Yamauchi, and V. Sahajwalla, “Pyrometallurgical recycling of Li-ion, Ni–Cd and Ni–MH batteries: A minireview,†Curr. Opin. Green Sustain. Chem., vol. 24, pp. 26–31, Aug. 2020, doi: 10.1016/j.cogsc.2020.01.005.

L. Cartechini, C. Miliani, L. Nodari, F. Rosi, and P. Tomasin, “The chemistry of making color in art,†J. Cult. Herit., vol. 50, pp. 188–210, Jul. 2021, doi: 10.1016/j.culher.2021.05.002.

D. Puthran and D. Patil, “Usage of heavy metal-free compounds in surface coatings,†J. Coatings Technol. Res., vol. 20, no. 1, pp. 87–112, Jan. 2023, doi: 10.1007/s11998-022-00648-4.

V. B. Shet et al., “Development and optimization of Zn–Ni–TiO2 composite coating, assessment of its corrosion resistance and antimicrobial activity,†Appl. Nanosci., vol. 11, no. 9, pp. 2469–2477, Sep. 2021, doi: 10.1007/s13204-021-02029-6.

A. Guglielmelli, F. Rocchi, C. Massimi, D. M. Castelluccio, A. Manna, and R. Mucciola, “Scientific motivations for a reassessment of the neutron capture cross sections of erbium isotopes in the high-sensitivity thermal energy range for LWR systems,†Ann. Nucl. Energy, vol. 178, p. 109337, Dec. 2022, doi: 10.1016/j.anucene.2022.109337.

N. Gujre, L. Rangan, and S. Mitra, “Occurrence, geochemical fraction, ecological and health risk assessment of cadmium, copper and nickel in soils contaminated with municipal solid wastes,†Chemosphere, vol. 271, p. 129573, May 2021, doi: 10.1016/j.chemosphere.2021.129573.

J. Jayaprabakar, J. A. Kumar, J. Parthipan, A. Karthikeyan, M. Anish, and N. Joy, “Review on hybrid electro chemical energy storage techniques for electrical vehicles: Technical insights on design, performance, energy management, operating issues & challenges,†J. Energy Storage, vol. 72, p. 108689, Nov. 2023, doi: 10.1016/j.est.2023.108689.

A. Makkasau, M. Sjahrul, and N. Jalaluddin, “Growth Pattern and The Toxicity Metal Ion Cd2+ on Phytoplankton Nannochloris in Medium Conwy,†Res. J. Sci. dan IT Manag., vol. 1, p. 12, 2012.

J. Briffa, E. Sinagra, and R. Blundell, “Heavy metal pollution in the environment and their toxicological effects on humans,†Heliyon, vol. 6, no. 9, p. e04691, Sep. 2020, doi: 10.1016/j.heliyon.2020.e04691.

J. W. Moore and S. Ramamoorthy, Heavy metals in natural waters: applied monitoring and impact assessment. Springer Science & Business Media, 2012.

E. Olmos, J. R. Martinez-Solano, A. Piqueras, and E. Hellin, “Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line),†J. Exp. Bot., vol. 54, no. 381, pp. 291–301, Jan. 2003, doi: 10.1093/jxb/erg028.

E. KEYHANI, F. ABDI-OSKOUEI, F. ATTAR, and J. KEYHANI, “DNA Strand Breaks by Metal-Induced Oxygen Radicals in Purified Salmonella typhimurium DNA,†Ann. N. Y. Acad. Sci., vol. 1091, no. 1, pp. 52–64, Dec. 2006, doi: 10.1196/annals.1378.054.

A. L. Dafré, H. Sies, and T. Akerboom, “Protein S-Thiolation and Regulation of Microsomal Glutathione Transferase Activity by the Glutathione Redox Couple,†Arch. Biochem. Biophys., vol. 332, no. 2, pp. 288–294, Aug. 1996, doi: 10.1006/abbi.1996.0344.

I. Ramos, E. Esteban, J. J. Lucena, and A. Gárate, “Cadmium uptake and subcellular distribution in plants of Lactuca sp. Cd–Mn interaction,†Plant Sci., vol. 162, no. 5, pp. 761–767, May 2002, doi: 10.1016/S0168-9452(02)00017-1.

A. Baryla, P. Carrier, F. Franck, C. Coulomb, C. Sahut, and M. Havaux, “Leaf chlorosis in oilseed rape plants ( Brassica napus ) grown on cadmium-polluted soil: causes and consequences for photosynthesis and growth,†Planta, vol. 212, no. 5–6, pp. 696–709, Apr. 2001, doi: 10.1007/s004250000439.

A. Schützendübel et al., “Cadmium-Induced Changes in Antioxidative Systems, Hydrogen Peroxide Content, and Differentiation in Scots Pine Roots,†Plant Physiol., vol. 127, no. 3, pp. 887–898, Nov. 2001, doi: 10.1104/pp.010318.

E. T. Quinitio, P. G. Gabasa Jr, F. P. Suñaz, E. P. Reyes, D. Peña Jr, and T. Dioscoro, “Prawn hatchery design and operation.†Aquaculture Department, Southeast Asian Fisheries Development Center, 1985.

P. L. FOSTER, “Copper exclusion as a mechanism of heavy metal tolerance in a green alga,†Nature, vol. 269, no. 5626, pp. 322–323, Sep. 1977, doi: 10.1038/269322a0.

J. Wang and V. P. Evangelou, “Metal tolerance aspects of plant cell wall and vacuole,†Handb. Plant Crop Physiol. Marcel Dekker, Inc., New York, pp. 695–717, 1995.

A. LILJAS et al., “Crystal Structure of Human Carbonic Anhydrase C,†Nat. New Biol., vol. 235, no. 57, pp. 131–137, Feb. 1972, doi: 10.1038/newbio235131a0.

R. Kneer and M. H. Zenk, “Phytochelatins protect plant enzymes from heavy metal poisoning,†Phytochemistry, vol. 31, no. 8, pp. 2663–2667, Aug. 1992, doi: 10.1016/0031-9422(92)83607-Z.

S. Loeffler, A. Hochberger, E. Grill, E.-L. Winnacker, and M. H. Zenk, “Termination of the phytochelatin synthase reaction through sequestration of heavy metals by the reaction product,†FEBS Lett., vol. 258, no. 1, pp. 42–46, Nov. 1989, doi: 10.1016/0014-5793(89)81611-4.

L. Sanità di Toppi and R. Gabbrielli, “Response to cadmium in higher plants,†Environ. Exp. Bot., vol. 41, no. 2, pp. 105–130, Apr. 1999, doi: 10.1016/S0098-8472(98)00058-6.

B. Köktürk, “Cadmium uptake and antioxidative enzymes in durum wheat cultivars in response to increasing Cd application.†2006.




DOI: http://dx.doi.org/10.18517/ijaseit.13.6.19038

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development