Robust Pose Estimation of Pedestrians with a Deep Neural Networks
Abstract
Keywords
Full Text:
PDFReferences
G. Papandreou, T. Zhu, N. Kanazawa, A. Toshev, J. Tompson, C. Bregler, and K. Murphy, “Towards accurate multi-person pose estimation in the wild,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4903-4911, 2017.
H. Wang, R. A. Güler, I. Kokkinos, G. Papandreou, and S. Zafeiriou, “BLSM: A bone-level skinned model of the human mesh,” In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part V 16, pp. 1-17, 2020.
Z. Cao, T. Simon, S. E. Wei, and Y. Sheikh, “Realtime multi-person 2d pose estimation using part affinity fields,” In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7291-7299, 2017.
Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields,” IEEE transactions on pattern analysis and machine intelligence, 43(1), pp. 172-186, 2021.
Z. Cao, H. Gao, K. Mangalam, Q. Z. Cai, M. Vo, and J. Malik, “Long-term human motion prediction with scene context,” In Computer Vision–ECCV 2020: 16th European Conference, pp. 387-404, 2020.
Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose: realtime multi-person 2D pose estimation using Part Affinity Fields,” IEEE transactions on pattern analysis and machine intelligence, 43(1), pp. 172-186, 2021.
H. S. Fang, S. Xie, Y. W. Tai, and C. Lu, “Rmpe: Regional multi-person pose estimation,” In Proceedings of the IEEE International Conference on Computer Vision, pp. 2334-2343, 2017.
J. Li, C. Wang, H. Zhu, Y. Mao, H. S. Fang, and C. Lu, “Crowdpose: Efficient crowded scenes pose estimation and a new benchmark,” In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10863-10872, 2019.
H. S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, and C. Lu, “Alphapose: Whole-body regional multi-person pose estimation and tracking in real-time,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022.
J. Sun, Y. Li, L. Chai, H. S. Fang, Y. L. Li, and C. Lu, “Human trajectory prediction with momentary observation,” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6467-6476, 2022.
H. S. Fang, Y. Xie, D. Shao, Y. L. Li, and C. Lu, “DecAug: augmenting HOI detection via decomposition,” In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 2, pp. 1300-1308, 2021.
H. S. Fang, Y. Xie, D. Shao, and C. Lu, “Dirv: Dense interaction region voting for end-to-end human-object interaction detection,” In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 2, pp. 1291-1299, 2021.
C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, and W. Shi, “Photo-realistic single image super-resolution using a generative adversarial network,” In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4681-4690, 2017.
J. M. Wolterink, K. Kamnitsas, C. Ledig, and I. Išgum, “Deep learning: Generative adversarial networks and adversarial methods,” In Handbook of Medical Image Computing and Computer Assisted Intervention, pp. 547-574, 2020.
C. Rockwell, D. F. Fouhey, and J. Johnson, “Pixelsynth: Generating a 3d-consistent experience from a single image,” In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14104-14113, 2021.
S. Kreiss, L. Bertoni, and A. Alahi, “Pifpaf: Composite fields for human pose estimation,” In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11977-11986, 2019.
W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, and Z. Wang, “Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network,” In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1874-1883, 2016.
C. Ouyang, J. Schlemper, C. Biffi, G. Seegoolam, J. Caballero, A. N. Price, and D. Rueckert, “Generalising deep learning MRI reconstruction across different domains,” arXiv preprint arXiv:1902.10815, 2019.
S. Park, J. Yoo, D. Cho, J. Kim, and T. H. Kim, “Fast adaptation to super-resolution networks via meta-learning,” In Computer Vision–ECCV 2020: 16th European Conference, Proceedings, Part XXVII 16, pp. 754-769, 2020.
S. Lee, D. Cho, J. Kim, and T. H. Kim, “Restore from restored: Video restoration with pseudo clean video,” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3537-3546, 2021.
S. Lee, J. Kim, J. S. Yoon, S. Shin, O. Bailo, N. Kim, and I. S. Kweon, “Vpgnet: Vanishing point guided network for lane and road marking detection and recognition,” In Proceedings of the IEEE international conference on computer vision, pp. 1947-1955, 2017.
G. Chen, K. Chen, L. Zhang, L. Zhang, and A. Knoll, “VCANet: Vanishing-point-guided context-aware network for small road object detection,” Automotive Innovation, 4, pp. 400-412, 2021.
X. Li, L. Zhu, Z. Yu, B. Guo, and Y. Wan, “Vanishing point detection and rail segmentation based on deep multi-task learning,” IEEE Access, 8, pp. 163015-163025, 2020.
W. Wang, P. Lu, X. Peng, W. Yin, and Z. Zhao, “RLSCNet: A Residual Line-Shaped Convolutional Network for Vanishing Point Detection,” In MultiMedia Modeling: 29th International Conference, MMM 2023, pp. 103-114, 2023.
G. Welch and G. Bishop, An introduction to the Kalman filter, 1995.
M. Khodarahmi and V. Maihami, “A review on Kalman filter models,” Archives of Computational Methods in Engineering, 30(1), pp. 727-747, 2023.
A. Rasouli, I. Kotseruba, and J. K. Tsotsos, “Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior,” In Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 206-213, 2017.
I. Kotseruba, A. Rasouli, and J. K. Tsotsos, “Benchmark for evaluating pedestrian action prediction,” In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1258-1268, 2021.
B. Liu, E. Adeli, Z. Cao, K. H. Lee, A. Shenoi, A. Gaidon, and J. C. Niebles, “Spatiotemporal relationship reasoning for pedestrian intent prediction,” IEEE Robotics and Automation Letters, 5(2), pp. 3485-3492, 2020.
B. Yang, W. Zhan, P. Wang, C. Chan, Y. Cai, and N. Wang, “Crossing or not? Context-based recognition of pedestrian crossing intention in the urban environment,” IEEE Transactions on Intelligent Transportation Systems, 23(6), pp. 5338-5349, 2021.
DOI: http://dx.doi.org/10.18517/ijaseit.13.4.19022
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development