Deep Learning Model for Identification of Diseases on Strawberry (Fragaria sp.) Plants
Abstract
Keywords
Full Text:
PDFReferences
J. A. Diaz-Pendon, M. C. Canizares, E. Moriones, E.R. Bejarano, H. Czosnek, J. Navas-Castillo, “Tomato yellow leaf curl viruses: Menage a trois between the virus complex, the plant and whitefly vector,” Mol. Plant Pathol., vol. 11, no. 4, pp 414–450, 2010, doi:10.1111/j.1364-3703.2010.00618.X.
R. L. Gilbertson, O. Batuman, “Emerging viral and other diseases of processing tomatoes: biology diagnosis and management,” Acta Hortic. no.1, pp. 35–48, 2013, doi:10.17660/ActaHortic.2013.971.2.
J. Liu and X. Wang, “Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network,” Front. Plant Sci., vol. 11, pp. 898, 2020, doi:10.3389/fpls.2020.00898.
J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Netw., vol. 61, pp. 85-117, 2015.
A. Kamilaris and F. X. Prenafeta-Boldú, “Deep Learning in Agriculture: A Survey,” Comput. Electron. Agric., vol. 147, pp. 70-90, doi:10.1016/j.compag.2018.02.016.
X. Song, G. Zhang, F. Liu, et. al., “Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model,” J. Arid Land., vol. 8, pp. 734–748, 2016, doi:10.1007/s40333-016-0049-0.
S. Arivazhagan, R. N. Shebiah, S. N. Ananthi, and S. V. Varthini, “Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features,” Agric. Eng. Int.: CIGR J vol. 15, no. 1, pp. 211-217, 2013.
V. Singh, and A. K. Misra, “Detection of plant leaf diseases using image segmentation and soft computing techniques,” Inf. Process. Agric., vol. 4, no. 1, pp. 41-49, 2017, doi:10.1016/j.inpa.2016.10.005.
S. P. Mohanty, D .P. Hughes, and M. Salathé, “Using deep learning for image-based plant disease detection,” Front. Plant Sci., vol. 7, pp. 1419, 2016.
S. Sladojevic, M. Arsenovic, A. Anderla, D. Culibrk, D., and D. Stefanovic, “Deep neural networks based recognition of plant diseases by leaf image classification,” Comput. Intell. Neurosci, vol. 2016, pp 3289801, 2016.
K. P. Ferentinos, “Deep learning models for plant disease detection and diagnosis,” Comput. Electron. Agric., vol. 145, pp. 311-318, 2018, doi: 10.1016/j.compag.2018.01.009.
V. Tiwari, R.C. Joshi, and M. K. Dutta, “Dense convolutional neural networks based multiclass plant disease detection and classification using leaf images,” Ecol. Inform., vol. 63, pp. 101289, 2021.
J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 779-788, 2016, doi:10.1109/CVPR.2016.91.
H. Li, C. Li, G. Li, and L. Chen, “A real-time table grape detection method based on improved YOLOv4-tiny network in complex background,” Biosyst. Eng., Vol 212, pp. 347-359, 2021, doi:10.1016/j.biosystemseng.2021.11.011.
P. Zhang and D. Li, D, “EPSA-YOLO-V5s: A novel method for detecting the survival rate of rapeseed in a plant factory based on multiple guarantee mechanisms,’ Comput. Electron. Agric., vol. 193, pp. 106714, 2022, doi:10.1016/j.compag.2022.106714.
M. P. Mathew, and T. Y. Mahesh, “Leaf-based disease detection in bell pepper plant using YOLO v5,” SIViP, vol. 16, pp. 841–847, 2022, doi:10.1007/s11760-021-02024-y.
M. J. A. Soeb, M. F. Jubayer, T. A. Tarin, et al., “Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Sci. Rep.. vol. 13, pp. 6078, 2023, doi:10.1038/s41598-023-33270-4.
M. Hariri, and E. Avşar, “Tipburn disorder detection in strawberry leaves using convolutional neural networks and particle swarm optimization,” Multimed. Tools. Appl., Vol. 81, no. 8, pp. 11795-11822, 2022, doi:10.1007/s11042-022-12759-6.
D. Hughes, and M. Salathé, “An open access repository of images on plant health to enable the development of mobile disease diagnostics”, arXiv preprint arXiv:1511.08060, 2015.
U. Afzaal, B. Bhattarai, Y.R. Pandeya, and J. Lee, “An Instance Segmentation Model for Strawberry Diseases Based on Mask R-CNN,” Sensors, vol. 21, pp. 6565, 2021.
E.F. Cox, J. M. T. McKee, “A Comparison of Tipburn Susceptibility in Lettuce Under Field and Glasshouse Conditions,” J. Hortic. Sci. vol. 51, pp. 117–122, 1976.
M. Kroggel, and C. Kubota, “Controlled environment strategies for tipburn management in greenhouse strawberry production,” In VIII International Strawberry Symposium vol.1156, pp. 529-536, August 2016.
G. N. Agrios, “Plant Pathology”, 5th Ed., San Diego California, Academic Press. I. N. 635 p, 2005.
B. J. Smith, “Epidemiology and pathology of strawberry anthracnose: a North American perspective,” HortScience, vol. 43, no. 1, pp. 69-73, 2008.
C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors,” In Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 7464-7475, 2022, doi:10.48550/arXiv.2207.02696.
D. Rosell, J. Matthews, and N. Talagala, “Managing bias in AI,” In Companion Proc. of 2019 TheWebConf., pp. 539-544, May 2019.
I. Model and L. Shamir, “Comparison of Data Set Bias in Object Recognition Benchmarks”, IEEE Access, vol. 3, no. 1, pp. 1953-1962, 2015.
M. H. Hamidon and T. Ahamed, “Detection of Tip-Burn Stress on Lettuce Grown in an Indoor Environment Using Deep Learning Algorithms.” Sensors, vol. 22, pp. 7251, 2022, doi:10.3390/s22197251.
I. Abbas, J. Liu, M. Amin, A. Tariq, and M. H. Tunio, “Strawberry fungal leaf scorch disease identification in real-time strawberry field using deep learning architectures,” Plants, vol. 10, no. 12, pp. 2643, 2021.
O. Natan, A. I. Gunawan, and B. S. B. Dewantara, “Grid SVM: Machine Learning Applications in Aquaculture Data Processing,” (in bahasa), Jurnal Rekayasa Elektrika vol. 15, no. 1, pp. 7-17, 2019, doi:10.17529/jre.v15i1.13298.
DOI: http://dx.doi.org/10.18517/ijaseit.13.4.19018
Refbacks
- There are currently no refbacks.
Published by INSIGHT - Indonesian Society for Knowledge and Human Development