Design, Modelling, and Analysis of Legged Robot for Terrains Exploration

Ahmad O. Hourani, Mahmoud Z. Iskandarani


Robotics design and applications become significant worldwide. In this work, an improved and upgraded Legged based robot is designed and modeled with the mathematical framework to enable rough terrain exploration. This work aims to analyze existing robots design and use it to design a better and more efficient robot that could be used in surveillance and exploration. In the proposed design, the robot’s stability is the main target. The new proposed design of the robot considers such a critical parameter. In designing the optimized and improved robot, weight, cost, and the closed-loop control algorithm for this robot are closely examined, described, and analyzed with promising results. The resulting design with solar panels as a partial power supply is simulated with mathematical modeling and analysis. The special case of the robot’s whole body covered with solar panels is described, characterizing curves relating drag force to solar power. The effect of safety factors and velocity is also characterized in the work. The resulting mathematical model describing curves showed a linear dependency between solar power (driving power) and drag force, with similar findings for the safety factor. However, a less linear, close-to-exponential relationship is demonstrated for velocity about the drag force. Such dynamic-legged design with supporting springs is numerically modeled using the Jacobian element, which proved to be the most suitable.


Robotic design; legged structures; wheeled structures; actuators; modelling; simulation

Full Text:



A. Torres-Pardo et al., “Legged locomotion over irregular terrains: state of the art of human and robot performance,†Bioinspiration and Biomimetics, vol. 17, no. 6, 2022, doi: 10.1088/1748-3190/ac92b3.

D. Wisth, M. Camurri, and M. Fallon, “VILENS: Visual, Inertial, Lidar, and Leg Odometry for All-Terrain Legged Robots,†IEEE Trans. Robot., vol. 39, no. 1, pp. 309–326, 2023, doi: 10.1109/TRO.2022.3193788.

M. Merschformann, T. Lamballais, M. B. M. de Koster, and L. Suhl, “Decision rules for robotic mobile fulfillment systems,†Oper. Res. Perspect., vol. 6, no. October, p. 100128, 2019, doi: 10.1016/j.orp.2019.100128.

R. Jiang, B. He, Z. Wang, Y. Zhou, S. Xu, and X. Li, “A Novel Simulation-Reality Closed-Loop Learning Framework for Autonomous Robot Skill Learning,†IEEE Trans. Cogn. Dev. Syst., vol. 14, no. 4, pp. 1520–1531, 2022, doi: 10.1109/TCDS.2021.3118294.

F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts, methods, theoretical framework, and applications,†Int. J. Adv. Robot. Syst., vol. 16, no. 2, pp. 1–22, 2019, doi: 10.1177/1729881419839596.

J. Wang et al., “A survey of learning-based robot motion planning,†IET Cyber-systems Robot., vol. 3, no. 4, pp. 302–314, 2021, doi: 10.1049/csy2.12020.

D. D. Fan, A. A. Agha-Mohammadi, and E. A. Theodorou, “Learning Risk-Aware Costmaps for Traversability in Challenging Environments,†IEEE Robot. Autom. Lett., vol. 7, no. 1, pp. 279–286, 2022, doi: 10.1109/LRA.2021.3125047.

N. Rathod et al., “Model Predictive Control with Environment Adaptation for Legged Locomotion,†IEEE Access, vol. 9, pp. 145710–145727, 2021, doi: 10.1109/ACCESS.2021.3118957.

T. Mikolajczyk et al., “Drive , Sensors and Control Systems,†Sensors (Switzerland), pp. 1–31, 2022.

B. Chong et al., “A general locomotion control framework for multi-legged locomotors,†Bioinspiration and Biomimetics, vol. 17, no. 4, 2022, doi: 10.1088/1748-3190/ac6e1b.

D. Drotman, S. Jadhav, D. Sharp, C. Chan, and M. T. Tolley, “Electronics-free pneumatic circuits for controlling soft-legged robots,†Sci. Robot., vol. 6, no. 51, 2021, doi: 10.1126/SCIROBOTICS.AAY2627.

M. Luneckas et al., “Hexapod robot gait switching for energy consumption and cost of transport management using heuristic algorithms,†Appl. Sci., vol. 11, no. 3, pp. 1–13, 2021, doi: 10.3390/app11031339.

G. Picardi, H. Hauser, C. Laschi, and M. Calisti, “Morphologically induced stability on an underwater legged robot with a deformable body,†Int. J. Rob. Res., vol. 40, no. 1, pp. 435–448, 2021, doi: 10.1177/0278364919840426.

C. Prados, M. Hernando, E. Gambao, and A. Brunete, “MoCLORA—An Architecture for Legged-and-Climbing Modular Bio-Inspired Robotic Organism,†Biomimetics, vol. 8, no. 1, p. 11, 2022, doi: 10.3390/biomimetics8010011.

G. Xin et al., “Variable Autonomy of Whole-body Control for Inspection and Intervention in Industrial Environments using Legged Robots,†IEEE Int. Conf. Autom. Sci. Eng., vol. 2020-Augus, pp. 1415–1420, 2020, doi: 10.1109/CASE48305.2020.9216813.

C. Zhao and W. Guo, “Inverted Modelling: An Effective Way to Support Motion Planning of Legged Mobile Robots,†Chinese J. Mech. Eng. (English Ed., vol. 36, no. 1, 2023, doi: 10.1186/s10033-023-00851-3.

A. Dettmann, D. Kühn, and F. Kirchner, “Control of active multi-point-contact feet for quadrupedal locomotion,†Int. J. Mech. Eng. Robot. Res., vol. 9, no. 4, pp. 481–488, 2020, doi: 10.18178/ijmerr.9.4.481-488.

M. Rafeeq, S. F. Toha, S. Ahmad, M. S. M. Yusof, M. A. M. Razib, and M. I. H. S. Bahrin, “Design and Modeling of Klann Mechanism-Based Paired Four Legged Amphibious Robot,†IEEE Access, vol. 9, pp. 166436–166445, 2021, doi: 10.1109/ACCESS.2021.3135706.

S. Fahmi, C. Mastalli, M. Focchi, and C. Semini, “Passive Whole-Body Control for Quadruped Robots: Experimental Validation over Challenging Terrain,†IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2553–2560, 2019, doi: 10.1109/LRA.2019.2908502.

J. Qi, H. Gao, H. Yu, M. Huo, W. Feng, and Z. Deng, “Integrated attitude and landing control for quadruped robots in asteroid landing mission scenarios using reinforcement learning,†Acta Astronaut., vol. 204, no. March, pp. 599–610, 2023, doi: 10.1016/j.actaastro.2022.11.028.

J. He and F. Gao, “Mechanism, Actuation, Perception, and Control of Highly Dynamic Multilegged Robots: A Review,†Chinese J. Mech. Eng. (English Ed., vol. 33, no. 1, 2020, doi: 10.1186/s10033-020-00485-9.

L. Mao, F. Gao, Y. Tian, and Y. Zhao, “Novel method for preventing shin-collisions in six-legged robots by utilising a robot–terrain interference model,†Mech. Mach. Theory, vol. 151, 2020, doi: 10.1016/j.mechmachtheory.2020.103897.

I. Torroba, C. I. Sprague, and J. Folkesson, “Fully-Probabilistic Terrain Modelling and Localization with Stochastic Variational Gaussian Process Maps,†IEEE Robot. Autom. Lett., vol. 7, no. 4, pp. 8729–8736, 2022, doi: 10.1109/LRA.2022.3182807.

C. D. Bellicoso et al., “Advances in real-world applications for legged robots,†J. F. Robot., vol. 35, no. 8, pp. 1311–1326, 2018, doi: 10.1002/rob.21839.

C. Boussema, M. J. Powell, G. Bledt, A. J. Ijspeert, P. M. Wensing, and S. Kim, “Online gait transitions and disturbance recovery for legged robots via the feasible impulse set,†IEEE Robot. Autom. Lett., vol. 4, no. 2, pp. 1611–1618, 2019, doi: 10.1109/LRA.2019.2896723.

Ç. Kaymak, A. Uçar, and C. Güzeliş, “Development of a New Robust Stable Walking Algorithm for a Humanoid Robot Using Deep Reinforcement Learning with Multi-Sensor Data Fusion,†Electron., vol. 12, no. 3, 2023, doi: 10.3390/electronics12030568.

A. Bratta, M. Focchi, N. Rathod, and C. Semini, “Optimization-Based Reference Generator for Nonlinear Model Predictive Control of Legged Robots,†Robotics, vol. 12, no. 1, pp. 1–18, 2023, doi: 10.3390/robotics12010006.

Y. Tang, G. Zhang, D. Ge, C. Ren, and S. Ma, “Undulatory gait planning method of multi-legged robot with passive-spine,†Biomim. Intell. Robot., vol. 2, no. 1, p. 100028, 2022, doi: 10.1016/j.birob.2021.100028.

H. Ou, H. Yi, Z. Qaiser, T. Ur Rehman, and S. Johnson, “A Structural Optimization Framework to Design Compliant Constant Force Mechanisms With Large Energy Storage,†J. Mech. Robot., vol. 15, no. 2, pp. 1–10, 2023, doi: 10.1115/1.4054766.

W. Wu, L. Gao, and X. Zhang, “A Stability Training Method of Legged Robots Based on Training Platforms and Reinforcement Learning with Its Simulation and Experiment,†Micromachines, vol. 13, no. 9, 2022, doi: 10.3390/mi13091436.

S. F. Z. Anwar, Y. Wang, W. Raza, G. Arnold, and W. Wang, “Mechanical energy fluctuation in lower limbs during walking in participants with and without total hip replacement,†R. Soc. Open Sci., vol. 10, no. 3, 2023, doi: 10.1098/rsos.230041.

A. Rosyid, C. Stefanini, and B. El-Khasawneh, “A Novel Walking Parallel Robot for On-Structure Three-Axis Machining of Large Structures,†J. Mech. Robot., vol. 15, no. 6, pp. 1–10, 2023, doi: 10.1115/1.4056682.

L. Wang et al., “Design and implementation of symmetric legged robot for highly dynamic jumping and impact mitigation,†Sensors, vol. 21, no. 20, pp. 1–16, 2021, doi: 10.3390/s21206885.

J. He, Y. Sun, L. Yang, and F. Gao, “Model Predictive Control of a Novel Wheeled–Legged Planetary Rover for Trajectory Tracking,†Sensors, vol. 22, no. 11, 2022, doi: 10.3390/s22114164.

T. Kelemenová and E. JakubkoviÄ, “Condition of Ultrasonic Distance Measurement System,†Acta Mechatronica, vol. 4, no. 2, pp. 1–5, 2019, doi: 10.22306/am.v4i2.47.

W. Jansen, D. Laurijssen, and J. Steckel, “Real-Time Sonar Fusion for Layered Navigation Controller†,†Sensors, vol. 22, no. 9, pp. 1–20, 2022, doi: 10.3390/s22093109.

Y. Alkendi, L. Seneviratne, and Y. Zweiri, “State of the Art in Vision-Based Localization Techniques for Autonomous Navigation Systems,†IEEE Access, vol. 9, pp. 76847–76874, 2021, doi: 10.1109/ACCESS.2021.3082778.

G. Haddeler et al., “Traversability analysis with vision and terrain probing for safe legged robot navigation,†Front. Robot. AI, vol. 9, no. August, pp. 1–14, 2022, doi: 10.3389/frobt.2022.887910.

H. Huang, Y. Li, and Q. Bai, “An improved A star algorithm for wheeled robots path planning with jump points search and pruning method,†Complex Eng. Syst., vol. 2, no. 3, p. 11, 2022, doi: 10.20517/ces.2022.12.

A. N. A. Rafai, N. Adzhar, and N. I. Jaini, “A Review on Path Planning and Obstacle Avoidance Algorithms for Autonomous Mobile Robots,†J. Robot., vol. 2022, 2022, doi: 10.1155/2022/2538220.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development