Comparative Analysis of Sugarcane Varieties in the Milagro Canton, Ecuador

Carlos Amador-Sacoto, Arturo Alvarado Barzallo, Edwin Hasang Moran, Jussen Facuy Delgado, Salomón Helfgott-Lerner

Abstract


Sugarcane is of great economic importance for the country; large and small sugarcane growers depend on this crop. In the present research, a comparative study was conducted between sugarcane varieties for a period of five (2017-2021) and ten years (2012-2021). Data from the Valdez mill and CINCAE were processed with descriptive statistical tools. The results indicated that the most cultivated varieties from 2017 to 2021 were ECU-01 and CC85-92; for the period from 2012 to 2021, the varieties CC85-9 and ECU-01. The EC-02 variety stood out in tons of cane harvested per hectare from 2012 to 2021 and the EC-02, ECU-01, and EC-06 varieties from 2017-2021. Varieties EC-06, EC-02, and EC-05 stood out in yield of 50kg bags of sugar per hectare from 2017 to 2021, and in 2012 to 2021 the varieties EC-02 and ECU-01, respectively. Varieties EC-06, EC-04, and EC-05 (2017-2021) and RAGNAR (2012-2021) achieved lower cutting age. Varieties EC-06 and EC-05 (2017-2021) and EC-02 and RAGNAR (2012-2021) presented the highest poll percentage (%). Finally, varieties EC-06 and EC-05 (2017-2021) and RAGNAR and CC85-9 (2012-2012) had better yields in kilograms of sugar per ton of cane (KATC). It is concluded that there is a moderate positive correlation between the variable tons of cane/ha and bags of sugar/ha and a very high positive correlation between KATC and sucrose content in juice (pol grades).

Keywords


Sugarcane varieties; ECU-01; EC-02; EC-04; EC-05; EC-06; CC85-92; RAGNAR.

Full Text:

PDF

References


INEC, “Encuesta de Superficie y Producción Agropecuaria Continua,†ESPAC, 2021. https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/espac-2021/Principales resultados-ESPAC_2021.pdf.

J. Fito, N. Tefera, and S. W. H. Van Hulle, “Sugarcane biorefineries wastewater: bioremediation technologies for environmental sustainability,†Chem. Biol. Technol. Agric., vol. 6, no. 1, pp. 1–13, Dec. 2019, doi: 10.1186/S40538-019-0144-5/TABLES/2.

G. Chiriboga, A. De La Rosa, C. Molina, S. Velarde, and G. Carvajal C, “Energy Return on Investment (EROI) and Life Cycle Analysis (LCA) of biofuels in Ecuador,†Heliyon, vol. 6, no. 6, 2020, doi: 10.1016/j.heliyon.2020.e04213.

S. . Valle, B. Yaguache, W. . Caicedo, J. F. Toscano, and D. M. Yucailla, “Socio-economic and productive characterization of sugarcane farmers in Pastaza province, Ecuador,†Cuba. J. Agric. Sci., vol. 55, 2021, Accessed: Feb. 19, 2023. [Online]. Available: https://www.redalyc.org/journal/6537/653769345004/html/.

R. O. Castillo and E. Silva Cifuentes, “Sugarcane Breeding and Supporting Genetics Research in Ecuador,†Sugar Tech, vol. 24, no. 1, pp. 222–231, Feb. 2022, doi: 10.1007/S12355-021-01057-4/METRICS.

R. Gómez Lince, A. Juan Tanca Marengo, Ã. Benavides, B. Romero, I. Pérez-Almeida, and B. Pernía, “Evaluation of the concentration of heavy metals in vegetables from Ecuador,†2022, doi: 10.21931/RB/2022.07.03.58.

R. Bernardo, W. L. Lourenzani, E. G. Satolo, and M. M. Caldas, “Analysis of the agricultural productivity of the sugarcane crop in regions of new agricultural expansions of sugarcane,†Gestão & Produção, vol. 26, no. 3, Aug. 2019, doi: 10.1590/0104-530X3554-19.

M. P. Vilas et al., “Ten years of monitoring dissolved inorganic nitrogen in runoff from sugarcane informs development of a modelling algorithm to prioritise organic and inorganic nutrient management,†Sci. Total Environ., vol. 803, p. 150019, Jan. 2022, doi: 10.1016/J.SCITOTENV.2021.150019.

Z. Li, D. Menefee, X. Yang, S. Cui, and N. Rajan, “Simulating productivity of dryland cotton using APSIM, climate scenario analysis, and remote sensing,†Agric. For. Meteorol., vol. 325, Oct. 2022, doi: 10.1016/J.AGRFORMET.2022.109148.

H. B. Dias, P. C. Sentelhas, G. Inman-Bamber, and Y. Everingham, “Sugarcane yield future scenarios in Brazil as projected by the APSIM-Sugar model,†Ind. Crops Prod., vol. 171, p. 113918, Nov. 2021, doi: 10.1016/J.INDCROP.2021.113918.

CINCAE, “Centro de Investigaciones de caña de azucar del Ecuador. Reporte anual,†cincae.org, 2020. https://cincae.org/wp-content/uploads/2013/04/Informe-Anual-2020.pdf.

Weatherspark, “El clima en Milagro, el tiempo por mes, temperatura promedio (Ecuador) - Weather Spark,†Feb. 21, 2023. https://es.weatherspark.com/y/19344/Clima-promedio-en-Milagro-Ecuador-durante-todo-el-año (accessed Feb. 21, 2023).

Z. Thibane, S. Soni, L. Phali, and L. Mdoda, “Factors impacting sugarcane production by small-scale farmers in KwaZulu-Natal Province-South Africa,†Heliyon, vol. 9, no. 1, p. e13061, Jan. 2023, doi: 10.1016/J.HELIYON.2023.E13061.

M. Akinkunmi, “Descriptive Data. In: Introduction to Statistics Using R. Synthesis Lectures on Mathematics & Statistics. ,†Springer, Cham, 2019, pp. 55–62.

J. Lee, “Statistics, Descriptive,†Int. Encycl. Hum. Geogr. Second Ed., pp. 13–20, Jan. 2020, doi: 10.1016/B978-0-08-102295-5.10428-7.

L. Liliana Marconi and A. D´Amelio, “Measures of central tendency and variability.,†2009. https://dokumen.tips/documents/medidas-de-tendencia-central-y-de-liliana-marconi-adriana-damelio-calculo-de.html?page=12 (accessed Feb. 22, 2023).

O. Alcalá, “El mapa conceptual como herramienta para mejorar la comprensión de las medidas de tendencia central y variabilidad de la estadística descriptiva,†Caracas, 2016. [Online]. Available: http://biblioteca2.ucab.edu.ve/anexos/biblioteca/marc/texto/AAT5214.pdf.

I. Jebli, F. Z. Belouadha, M. I. Kabbaj, and A. Tilioua, “Prediction of solar energy guided by pearson correlation using machine learning,†Energy, vol. 224, p. 120109, Jun. 2021, doi: 10.1016/J.ENERGY.2021.120109.

R. M. Granados, “Modelos de regresión lineal múltiple,†España, 2016. Accessed: Feb. 19, 2023. [Online].Available:https://www.ugr.es/~montero/matematicas/regresion_lineal.pdf.

B. Alemán-Montes, P. Serra, and A. Zabala, “Models for the estimation of sugarcane yield in Costa Rica with field data and vegetation indices,†Rev. Teledetección, no. 61, pp. 1–13, Jan. 2023, doi: 10.4995/RAET.2023.18705.

H. Xu, P. Croot, and C. Zhang, “Exploration of the spatially varying relationships between lead and aluminium concentrations in the topsoil of northern half of Ireland using Geographically Weighted Pearson Correlation Coefficient,†Geoderma, vol. 409, p. 115640, Mar. 2022, doi: 10.1016/J.GEODERMA.2021.115640.

P. Vinuesa, “Correlation: theory and practice,†unam, Oct. 14, 2016. https://www.ccg.unam.mx/~vinuesa/R4biosciences/docs/Tema8_correlacion.html (accessed Feb. 22, 2023).

CINCAE, “Cane and sugar production in Ecuador: zafra 2018,†Sugar Cane Research Center of Ecuador, 2019. https://cincae.org/prod-zafra/ (accessed Feb. 22, 2023).

P. D. Riajaya et al., “Growth and Yield Potential of New Sugarcane Varieties during Plant and First Ratoon Crops,†Sustain. 2022, Vol. 14, Page 14396, vol. 14, no. 21, p. 14396, Nov. 2022, doi: 10.3390/SU142114396.

MAG, “Situational bulletin sugarcane cultivation.,†Ministry of Agriculture and Livestock, 2021. https://fliphtml5.com/ijia/banu/basic.

G. D. Urgesa and E. O. Keyata, “Effect of Harvesting Ages on Yield and Yield Components of Sugar Cane Varieties Cultivated at Finchaa Sugar Factory, Oromia, Ethiopia,†Int. J. food Sci., vol. 2021, 2021, doi: 10.1155/2021/2702095.

S. Chumphu, N. Jongrungklang, and P. Songsri, “Association of Physiological Responses and Root Distribution Patterns of Ratooning Ability and Yield of the Second Ratoon Cane in Sugarcane Elite Clones,†Agron. 2019, Vol. 9, Page 200, vol. 9, no. 4, p. 200, Apr. 2019, doi: 10.3390/AGRONOMY9040200.

CINCAE, “Estrategia de la transferencia de tecnología en Ecuador, caso de estudio: caña de azúcar,†cincae, Feb. 19, 2023. https://ipkey.eu/sites/default/files/ipkey-docs/2019/CINCAE.pdf (accessed Feb. 19, 2023).

CINCAE, “Informative Letter, 13,†Sugar Cane Research Center of Ecuador, 2011. https://cincae.org/wp-content/uploads/2013/04/Año-13-No.-2.pdf.

S. R. K. Priya, R. K. Balambiga, P. Mishra, and S. S. Das, “Sugarcane yield forecast using weather based discriminant analysis,†Smart Agric. Technol., vol. 3, p. 100076, Feb. 2023, doi: 10.1016/J.ATECH.2022.100076.

N. E. Dlamini and M. Zhou, “Soils and seasons effect on sugarcane ratoon yield,†F. Crop. Res., vol. 284, p. 108588, Aug. 2022, doi: 10.1016/J.FCR.2022.108588.

S. Satpathy et al., “Evaluation of Models for Utilization in Genomic Prediction of Agronomic Traits in the Louisiana Sugarcane Breeding Program,†Agric., vol. 12, no. 9, p. 1330, Sep. 2022, doi: 10.3390/AGRICULTURE12091330/S1.

C. Mahadevaiah et al., “Genomic Selection in Sugarcane: Current Status and Future Prospects,†Front. Plant Sci., vol. 12, Sep. 2021, doi: 10.3389/FPLS.2021.708233.

N. Fickett et al., “Genome-wide association mapping identifies markers associated with cane yield components and sucrose traits in the Louisiana sugarcane core collection,†Genomics, vol. 111, no. 6, pp. 1794–1801, Dec. 2019, doi: 10.1016/J.YGENO.2018.12.002.

CINCAE, “Physiology, flowering and genetic improvement of sugarcane in Ecuador.,†Sugar Cane Research Center of Ecuador. Technical Publication No. 3., 2004. https://cincae.org/wp-content/uploads/2013/05/FISOLOGIA-Y-MEJORAMTO.pdf (accessed Feb. 22, 2023).




DOI: http://dx.doi.org/10.18517/ijaseit.13.2.18653

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development