Assessing the Accuracy of Land Use Classification Using Multi-spectral Camera From LAPAN-A3, Landsat-8 and Sentinel-2 Satellite: A Case Study in Probolinggo-East Java

Ega Asti Anggari, Agus Herawan, Patria Rachman Hakim, Agung Wahyudiono, Sartika Salaswati, Elvira Rachim, Zylshal Zylshal


The LAPAN-A3 is the third microsatellite generation developed by the Research Center for Satellite Technology. The satellite can be used for land classification, agriculture monitoring, drought monitoring, and land use change. This study aims to classify land use and land cover in the research area. The main image used is LAPAN-A3; the compared images are Landsat-8 and Sentinel-2. Three images were taken on the same day and selected on cloud-free terms. The classification process starts with determining the region of interest (ROI) and the class. The classification is divided into six classes: water, forests, rice fields, settlements, open land, and coastal areas. The classification technique uses supervised learning with the maximum likelihood method. This study used Landsat 8 and Sentinel-2 data to compare the results obtained from LAPAN-A3. The accuracy test results for the LAPAN-A3 and Landsat-8 are 84.7042% and 0.783, respectively. While the accuracy test of LAPAN-A3 and Sentinel-2 is 72.2313%, the kappa value is 0.6394. The classification of two comparisons is quite accurate, with an accuracy of more than 70%. The LA3 classification successfully identifies water and coastal areas. The producer and accuracy is substantiated by comparing the results with both Landsat-8 and Sentinel-2 satellite data, which exhibit an accuracy rate exceeding 85%. Finally, LAPAN-A3 has great potential for classifying land use and land cover when compared to Landsat 8 and Sentinel-2 images, but future research should increase the number of datasets and vary the research area to improve the results.


Multispectral; LAPAN-A3; Kappa value; Probolinggo; maximum likelihood

Full Text:



R. H. Triharjanto and P. R. Hakim, “Review of satellite technology development in Indonesian space agency based on its technical publications in 2012-2016,†in Proceedings of the International Astronautical Congress, IAC, 2017, vol. 9.

M. Mukhoriyah and D. Kushardono, “Application of Lapan A3 Satellite Data for The Identification of Paddy Fields Using Object Based Image Analysis (OBIA),†Int. J. Remote Sens. Earth Sci., vol. 18, no. 1, 2021, doi: 10.30536/j.ijreses.2021.v18.a3378.

P. M. Afgatiani et al., “Assessing LAPAN-A3 Satellite with Line Imager Space Application (LISA) Sensor for Oil Spill Detection,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 12, no. 6, 2022, doi: 10.18517/ijaseit.12.6.16076.

T. Getu Engida, T. A. Nigussie, A. B. Aneseyee, and J. Barnabas, “Land Use/Land Cover Change Impact on Hydrological Process in the Upper Baro Basin, Ethiopia,†Appl. Environ. Soil Sci., vol. 2021, 2021, doi: 10.1155/2021/6617541.

A. K. Wijayanto, S. M. Yusuf, and W. A. Pambudi, “The Characteristic of spectral reflectance of LAPAN-IPB (LAPAN-A3) Satellite and Landsat 8 over agricultural area in Probolinggo, East Java,†IOP Conf. Ser. Earth Environ. Sci., vol. 284, no. 1, pp. 1–14, 2019, doi: 10.1088/1755-1315/284/1/012004.

S. Zamzam, “Geological Controls and Prospectivity Mapping for Manganese Ore Deposits Using Predictive Modeling Comparison: An Integration of Outcrop and Remote Sensing Data, Sinai Microplate, Egypt,†J. Earth Sci., vol. 34, no. 2, 2023, doi: 10.1007/s12583-021-1583-z.

G. Gopinath, N. Sasidharan, and U. Surendran, “Landuse classification of hyperspectral data by spectral angle mapper and support vector machine in humid tropical region of India,†Earth Sci. Informatics, vol. 13, no. 3, 2020, doi: 10.1007/s12145-019-00438-4.

Z. Yuan, J. Xu, Y. Wang, and B. Yan, “Analyzing the influence of land use/land cover change on landscape pattern and ecosystem services in the Poyang Lake Region, China,†Environ. Sci. Pollut. Res., vol. 28, no. 21, 2021, doi: 10.1007/s11356-020-12320-8.

X. Y. Tong et al., “Land-cover classification with high-resolution remote sensing images using transferable deep models,†Remote Sens. Environ., vol. 237, 2020, doi: 10.1016/j.rse.2019.111322.

M. Chamling and B. Bera, “Spatio-temporal Patterns of Land Use/Land Cover Change in the Bhutan–Bengal Foothill Region Between 1987 and 2019: Study Towards Geospatial Applications and Policy Making,†Earth Syst. Environ., vol. 4, no. 1, 2020, doi: 10.1007/s41748-020-00150-0.

T. Zhang, J. Su, Z. Xu, Y. Luo, and J. Li, “Sentinel-2 satellite imagery for urban land cover classification by optimized random forest classifier,†Appl. Sci., vol. 11, no. 2, 2021, doi: 10.3390/app11020543.

W. Lv and X. Wang, “Overview of Hyperspectral Image Classification,†Journal of Sensors, vol. 2020. 2020, doi: 10.1155/2020/4817234.

A. Serwa and S. Elbialy, “Enhancement of classification accuracy of multi-spectral satellites’ images using Laplacian pyramids,†Egypt. J. Remote Sens. Sp. Sci., vol. 24, no. 2, 2021, doi: 10.1016/j.ejrs.2020.12.006.

L. Polidori and M. El Hage, “Methods : A Critical Review,†Remote Sens., vol. 12, no. 21, 2020.

D. G. Habte, S. Belliethathan, and T. Ayenew, “Evaluation of the status of land use/land cover change using remote sensing and GIS in Jewha Watershed, Northeastern Ethiopia,†SN Appl. Sci., vol. 3, no. 4, 2021, doi: 10.1007/s42452-021-04498-4.

M. E. D. Chaves, M. C. A. Picoli, and I. D. Sanches, “Recent applications of Landsat 8/OLI and Sentinel-2/MSI for land use and land cover mapping: A systematic review,†Remote Sensing, vol. 12, no. 18. 2020, doi: 10.3390/rs12183062.

B. Chatenoux et al., “The Swiss data cube, analysis ready data archive using earth observations of Switzerland,†Sci. Data, vol. 8, no. 1, 2021, doi: 10.1038/s41597-021-01076-6.

M. D. Nguyen, O. M. Baez-Villanueva, D. D. Bui, P. T. Nguyen, and L. Ribbe, “Harmonization of landsat and sentinel 2 for crop monitoring in drought prone areas: Case studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon),†Remote Sens., vol. 12, no. 2, 2020, doi: 10.3390/rs12020281.

R. S. Reddy, “Landsat-8 vs. Sentinel-2: Landuse Landcover Change Analysis and Differences in Gudur Municipality,†Int. J. Res. Appl. Sci. Eng. Technol., vol. 9, no. VI, 2021, doi: 10.22214/ijraset.2021.32711.

M. Mathewos, S. M. Lencha, and M. Tsegaye, “Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation,†Land, vol. 11, no. 10, 2022, doi: 10.3390/land11101632.

A. Herawan, A. Julzarika, P. R. Hakim, and E. A. Anggari, “Object-Based on Land Cover Classification on LAPAN-A3 Satellite Imagery Using Tree Algorithm (Case Study: Rote Island),†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 6, pp. 2254–2260, 2021, doi: 10.18517/ijaseit.11.6.14200.

A. H. Syafrudin, S. Salaswati, and W. Hasbi, “Pre-Flight Radiometric Model of Linear Imager on LAPAN-IPB Satellite,†in IOP Conference Series: Earth and Environmental Science, 2018, vol. 149, no. 1, doi: 10.1088/1755-1315/149/1/012068.

P. R. Hakim, A. H. Syafrudin, S. Salaswati, S. Utama, and W. Hasbi, “Development of Systematic Image Preprocessing of LAPAN-A3/IPB Multispectral Images,†Int. J. Adv. Stud. Comput. Sci. Eng., vol. 7, no. 10, pp. 9–18, 2019.

S. Utama, M. A. Saifudin, and M. Mukhayadi, “Momentum Biased Performance of LAPAN-A3 Satellite for Multispectral Pushbroom Imager Operation,†in IOP Conference Series: Earth and Environmental Science, 2018, vol. 149, no. 1, doi: 10.1088/1755-1315/149/1/012062.

B. Moradi, M. J. V. Zoej, S. Yaghoobi, and S. Yavari, “An improved approach based on terraindependent mathematical models for georeferencing pushbroom satellite images,†Photogramm. Eng. Remote Sensing, vol. 87, no. 1, 2021, doi: 10.14358/PERS.87.1.53.

S. Liang, J. Cheng, and J. Zhang, “Maximum likelihood classification of soil remote sensing image based on deep learning,†Earth Sci. Res. J., vol. 24, no. 3, 2020, doi: 10.15446/esrj.v24n3.89750.

A. Kumar, R. D. Garg, P. Singh, A. Shankar, S. R. Nayak, and M. Diwakar, “Monitoring the Land Use, Land Cover Changes of Roorkee Region (Uttarakhand, India) Using Machine Learning Techniques,†Int. J. Soc. Ecol. Sustain. Dev., vol. 14, no. 1, 2023, doi: 10.4018/IJSESD.316883.

L. M. Western, J. C. Rougier, I. M. Watson, and P. N. Francis, “Evaluating nonlinear maximum likelihood optimal estimation uncertainty in cloud and aerosol remote sensing,†Atmos. Sci. Lett., vol. 21, no. 8, 2020, doi: 10.1002/asl.980.

A. H. Chughtai, H. Abbasi, and I. R. Karas, “A review on change detection method and accuracy assessment for land use land cover,†Remote Sens. Appl. Soc. Environ., vol. 22, 2021, doi: 10.1016/j.rsase.2021.100482.

S. Dong, Z. Chen, B. Gao, H. Guo, D. Sun, and Y. Pan, “Stratified even sampling method for accuracy assessment of land use/land cover classification: a case study of Beijing, China,†Int. J. Remote Sens., vol. 41, no. 16, 2020, doi: 10.1080/01431161.2020.1739349.

M. D. K. L. Gunathilaka and S. L. J. Fernando, “Accuracy Assessment of Unsupervised Land Use and Land Cover Classification Using Remote Sensing and Geographical Information Systems,†Int. J. Environ. Eng. Educ., vol. 4, no. 3, 2022, doi: 10.55151/ijeedu.v4i3.73.

M. F. Baig, M. R. U. Mustafa, I. Baig, H. B. Takaijudin, and M. T. Zeshan, “Assessment of Land Use Land Cover Changes and Future Predictions Using CA-ANN Simulation for Selangor, Malaysia,†Water (Switzerland), vol. 14, no. 3, 2022, doi: 10.3390/w14030402.

E. Duku, P. A. D. Mattah, and D. B. Angnuureng, “Assessment of land use/land cover change and morphometric parameters in the keta lagoon complex ramsar site, ghana,†Water (Switzerland), vol. 13, no. 18, 2021, doi: 10.3390/w13182537.

M. Traore, M. S. Lee, A. Rasul, and A. Balew, “Assessment of land use/land cover changes and their impacts on land surface temperature in Bangui (the capital of Central African Republic),†Environ. Challenges, vol. 4, 2021, doi: 10.1016/j.envc.2021.100114.

D. Phiri, M. Simwanda, S. Salekin, V. R. Nyirenda, Y. Murayama, and M. Ranagalage, “Sentinel-2 data for land cover/use mapping: A review,†Remote Sensing, vol. 12, no. 14. 2020, doi: 10.3390/rs12142291.

V. K. Mishra and T. Pant, “Open surface water index: a novel approach for surface water mapping and extraction using multispectral and multisensory data,†Remote Sens. Lett., vol. 11, no. 11, 2020, doi: 10.1080/2150704X.2020.1804085.

P. Amatya, D. Kirschbaum, T. Stanley, and H. Tanyas, “Landslide mapping using object-based image analysis and open source tools,†Eng. Geol., vol. 282, 2021, doi: 10.1016/j.enggeo.2021.106000.

Z. Deng and B. Quan, “Intensity Analysis to Communicate Detailed Detection of Land Use and Land Cover Change in Chang-Zhu-Tan Metropolitan Region, China,†Forests, vol. 14, no. 5, 2023, doi: 10.3390/f14050939.

T. Liu, L. Yang, and D. Lunga, “Change detection using deep learning approach with object-based image analysis,†Remote Sens. Environ., vol. 256, 2021, doi: 10.1016/j.rse.2021.112308.

P. Potapov et al., “Landsat analysis ready data for global land cover and land cover change mapping,†Remote Sens., vol. 12, no. 3, 2020, doi: 10.3390/rs12030426.

W. Wu et al., “New Scheme for Impervious Surface Area Mapping from SAR Images with Auxiliary User-Generated Content,†IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 13, 2020, doi: 10.1109/JSTARS.2020.3027507.

F. Shi and M. Li, “Assessing land cover and ecological quality changes under the new-type urbanization from multi-source remote sensing,†Sustain., vol. 13, no. 21, 2021, doi: 10.3390/su132111979.

H. Zheng and H. Li, “Spatial–temporal evolution characteristics of land use and habitat quality in Shandong Province, China,†Sci. Rep., vol. 12, no. 1, 2022, doi: 10.1038/s41598-022-19493-x.

J. T. Nugroho, Z. Zylshal, and D. Kushardono, “LAPAN-A3 Satellite Data Analysis for Land Cover Classification (Case Study: Toba Lake Area, North Sumatra),†Int. J. Remote Sens. Earth Sci., vol. 15, no. 1, 2018, doi: 10.30536/j.ijreses.2018.v15.a2782.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development