Modification of Surface Charges on Ex-Gold Mining Soil Ameliorated with Activation of Sub-Bituminous Coal - NaOH

Teguh Budi Prasetyo, Amsar Maulana, Mimien Harianti, Aresta Leo Lita, - Herviyanti

Abstract


The high mercury contamination in the ex-gold mining soil is the impetus for the development of soil remediation with amelioration technology that utilizes sub-bituminous coal activated with 10% NaOH (SC-NaOH) to modify the soil surface charge by affecting the chemical properties of the ex-gold mining soil. This research aimed to determine and study the modified surface charge of ex-gold mining soil ameliorated with SC - NaOH. The experimental design used in this study was a Completely Randomized Design with three replications. The treatment was implemented in a pot with equivalent dose: A = 0 (0.0g); B = 10 (0.5g); C = 20 (1.0g); D = 30 (1.5g), and (E) 40 t ha-1 (2g 100g-1 soil). The results showed amelioration technology with SC - NaOH, at the application of 40 t ha-1 on ex-gold mining soils, can modification of soil surface charge through changes in chemical characteristics by increasing the pH H2O EC, CEC, and SOM, respectively of 5.77; 4.33 dS m-1; 2.41 cmol(+) kg-1 and 17.15% compared to the control. Soil surface charge supported by soil minerals [Quartz (SiO2), Graphite (C), and Periclase (MgO)] and also happening decreases transmittance in the OH group (0.18%), which causes an increased adsorption capacity of the soil to Hg, which causes a decrease in total Hg of 2.84 mg kg-1 compared to the control. The correlation between total Hg and soil chemical properties in ex-gold mining soil ameliorated with SC – NaOH (Total Hg with SOM > ΔpH > EC > pH H2O > CEC).

Keywords


Activation; amelioration technology; ex-gold mining soil; NaOH; soil surface charge; sub-bituminous coal

Full Text:

PDF

References


A. . A. Meutia, R. Lumowa, and M. Sakakibara, “Indonesian Artisanal and Small-Scale Gold Mining—A Narrative Literature Review,†Int. J. Environ. Res. Public Health, vol. 19, no. 7, p. 28, 2022, doi: 10.3390/ijerph19073955.

Y. H. Yitagesu, “Heavy Metal Pollutions in Soil : Sources , Speciation and Remediations ; Review,†Sch. Int. J. Biochem., vol. 4, no. 6, pp. 57–65, 2021, doi: 10.36348/sijb.2021.v04i06.001.

P. K. Pant, “Amelioration of Soil: Based on Mineral (Zeolite) Source: A Review,†Trends Tech. Sci. Res., vol. 04, no. 1, 2020, doi: 10.19080/ttsr.2020.04.555626.

Y. Chen, J. Ma, X. Wu, L. Weng, and Y. Li, “Sedimentation and Transport of Different Soil Colloids: Effects of Goethite and Humic Acid,†Water, vol. 12, no. 980, pp. 1–15, 2020.

A. Beamlaku and T. Habtemariam, “Soil Colloids, Types and their Properties: A review,†Open J. Bioinforma. Biostat., vol. 5, no. 1, pp. 8–13, 2021, doi: 10.17352/ojbb.000010.

Herviyanti, T. B. Prasetyo, - Juniarti, and D. Rezki, “Activation Unproductive Coal Powder with Urea to Improve Chemical Properties of Ultisols,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 7, no. 3, p. 957, Jun. 2017, doi: 10.18517/ijaseit.7.3.2152.

T. B. Prasetyo, Herviyanti, Juniarti, M. Harianti, and N. P. Panjaitan, “Activation of Sub-bituminous Powder with Urea and Dolomite to Improve Nutrient Content of Ultisols and The Growth of Oil Palm (elaeis guineensis jacq) Seedlings,†Malaysian J. Soil Sci., vol. 22, pp. 147–160, 2018.

Herviyanti, Gusnidar, M. Harianti, and A. Maulana, “Improvement Chemical Properties of Oxisols and Rice Production with Humic Substances from Sub-bituminous Coal Indonesia,†Agrivita, vol. 41, no. 3, pp. 428–438, 2019, doi: 10.17503/agrivita.v41i3.1106.

H. Herviyanti, A. Maulana, T. B. Prasetyo, I. Darfis, L. Hakim, and R. Ryswaldi, “Activation of sub-bituminous coal with dolomite to improve chemical properties and palm oil growth on ultisols,†IOP Conf. Ser. Earth Environ. Sci., vol. 741, no. 1, 2021, doi: 10.1088/1755-1315/741/1/012032.

T. B. Prasetyo, Z. Naspendra, A. Maulana, M. Solfianti, S. D. Krisna, and Herviyanti, “Potential of biochar bamboo and sub-bituminous coal as amendment of acid mineral soils for improving the growth of arabica coffee [Coffea arabica l.] seedlings,†in IOP Conference Series: Earth and Environmental Science, 2021, vol. 741, no. 1, p. 9, doi: 10.1088/1755-1315/741/1/012026.

H. Herviyanti, A. Maulana, T. B. Pasetyo, T. Omily, and R. Ryswaldi, “Application of Sub-bituminous Coal Activated with Urea to Improve Chemical Properties of Ultisols and Palm Oil’s Growth (Elaeis Guineensis Jacq.) In Pulau Punjung, Dharmasraya,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 2, pp. 791–797, 2021, doi: 10.18517/ijaseit.11.2.13536.

H. Herviyanti, T. B. Prasetyo, J. Juniarti, S. Prima, and S. Wahyuni, “The Role of Powder Sub-bituminous Coal with Sodium Hydroxide (NaOH) to Improve Chemical Properties of Ultisols,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 8, no. 5, pp. 2052–2058, Oct. 2018, doi: 10.18517/ijaseit.8.5.3543.

D. Rezki, F. Ahmad, and G. Gusnidar, “Ekstraksi Bahan Humat dari Batubara (Subbituminus) dengan Menggunakan 10 Jenis Pelarut,†J. Solum, vol. 4, no. 2, p. 73, Jul. 2007, doi: 10.25077/js.4.2.73-80.2007.

Eviati and Sulaeman, Petunjuk Teknis : Analisis Kimia Tanah, Tanaman, Air dan Pupuk, 2nd ed., vol. 148. Bogor, Jawa Barat: Balai Penelitian Tanah, 2012.

B. Singh, M. Camps-Arbestain, and J. Lehmann, Biochar : A Guide To Analytical Methods. Clayton South VIC 3169 Australia: CSIRO, 2017.

S. K. Khan and S. Kar, “Surface charge is a function of organic carbon content and mineralogical compositions of soil,†Eurasian J. Soil Sci., vol. 7, no. 1, pp. 59–63, 2018, doi: 10.18393/ejss.335332.

A. R. Saidy, B. J. Priatmadi, and M. Septiana, “Influence of type and amount of organic matters on the iron sorption of acid mine drainage onto reclaimed-mining soils,†J. Degrad. Min. Lands Manag., vol. 8, no. 4, pp. 2985–2994, 2021, doi: 10.15243/JDMLM.2021.084.2985.

C. F. Mahler, N. D. S. Svierzoski, and C. A. R. Bernardino, “Chemical Characteristics of Humic Substances in Nature", in Humic Substances,†London, United Kingdom: IntechOpen, vol. 11, p. 13, 2021.

Z. Xu and D. C. W. Tsang, “Redox-induced transformation of potentially toxic elements with organic carbon in soil,†Carbon Res., vol. 1, no. 1, pp. 1–18, 2022, doi: 10.1007/s44246-022-00010-8.

C. F. Araujo-Junior, J. Vinicius Cesar Sambatti, H. V. de A. Junior, and H. H. Yamada, “Soil Electrochemical and Physical Properties in Coffee Crops in the State of Paraná, Brazil in Coffee - Production and Research.,†London, United Kingdom: IntechOpen, pp. 225–240, 2020.

J. Liu, Y. Yang, Q. Zheng, X. Su, J. Liu, and Z. Zhou, “Effects of soil surface electrochemical properties on soil detachment regulated by soil types and plants,†Sci. Total Environ., vol. 834, no. April, 2022, doi: 10.1016/j.scitotenv.2022.154991.

Z. Xu, Z. Yang, H. Wang, and J. Jiang, “Assessing Redox Properties of Natural Organic Matters with regard to Electron Exchange Capacity and Redox-Active Functional Groups,†J. Chem., vol. 1, pp. 20–25, 2020, doi: 10.1155/2020/2698213.

S. Kaiser, M. S. Kaiser, and S. R. Ahmed, “Wear Behavior of Commercial Tire Rubber against Mild Steel in Dry, Wet and 3.5% NaCl Corrosive Environment,†J. Energy, Mech. Mater. Manuf. Eng., vol. 5, no. 1, p. 1, 2020, doi: 10.22219/jemmme.v5i1.10428.

X. Zhang, S. Li, F. Guo, S. Chao, C. Liu, and G. Zhu, “Experimental Study on Friction Characteristics of Eccentric Cam–Tappet Pairs,†Neiranji Gongcheng/Chinese Intern. Combust. Engine Eng., vol. 43, no. 5, pp. 84–90, 2022, doi: 10.13949/j.cnki.nrjgc.2022.05.012.

S. Samsudin, N. A. Aziz, A. A. Hairuddin, and S. U. Masuri, “Developing Sub-Bituminous Coal Sintering Ratio for Predicting Coal Ash Slagging Factors,†Int. J. Technol., vol. 12, no. 4, pp. 791–801, 2021, doi: 10.14716/ijtech.v12i4.4892.

K. Ampong, M. S. Thilakaranthna, and L. Y. Gorim, “Understanding the Role of Humic Acids on Crop Performance and Soil Health,†Front. Agron., vol. 4, pp. 1–14, 2022, doi: 10.3389/fagro.2022.848621.

I. S. Bayer, “Hyaluronic acid and controlled release: A review,†Molecules, vol. 25, no. 11, pp. 1–38, 2020, doi: 10.3390/molecules25112649.

A. G. Fahmi, Z. Abidin, C. Kusmana, and E. Noor, “Utilization of Palm Kernel Meal (PKM) as activated charcoal to remove organic pollutants,†in Journal of Physics: Conference Series, 2021, vol. 1882, no. 1, pp. 1–7, doi: 10.1088/1742-6596/1882/1/012117.

X. Wen et al., “Surface charge properties of variable charge soils influenced by environmental factors,†Appl. Clay Sci., vol. 189, no. 808, p. 105522, 2020, doi: 10.1016/j.clay.2020.105522.

H. Tian and C. Wei, “Thermal and saline effect on mineral-water interactions in compacted clays,†in 7th Asia-Pacific Conference on Unsaturated Soils, AP-UNSAT 2019, 2019, pp. 2–3.

J. T. Kloprogge and H. Hartman, “Clays and the Origin of Life: The Experiments,†Life, vol. 12, no. 2, pp. 1–54, 2022, doi: 10.3390/life12020259.

L. Zhang, G. M. Gadd, and Z. Li, Microbial biomodification of clay minerals, 1st ed., vol. 114. Elsevier Inc., 2021.

J. Götze, R. Möckel, and Y. Pan, “Supplementary Materials Mineralogy , geochemistry and genesis of agate ‒ a review,†Minerals, vol. 10, pp. 1–51, 2020.

J. L. Subasinghe, S. Ganeshalingam, and N. Kuganathan, “Computational Study of Crystallography, Defects, Ion Migration and Dopants in Almandine Garnet,†Physchem, vol. 2, no. 1, pp. 43–51, 2022, doi: 10.3390/physchem2010004.

P. H. Gopani, N. Singh, H. K. Sarma, P. Mattey, and V. R. Srivastava, “Role of monovalent and divalent ions in low-salinity water flood in carbonate reservoirs: An integrated analysis through zeta potentiometric and simulation studies,†Energies, vol. 14, no. 3, pp. 1–16, 2021, doi: 10.3390/en14030729.

A. S. Kamal, R. Othman, and N. H. Jabarullah, “Preparation and synthesis of synthetic graphite from biomass waste: A review,†Syst. Rev. Pharm., vol. 11, no. 2, pp. 881–894, 2020.

N. H. Jabarullah, A. S. Kamal, and R. Othman, “A modification of palm waste lignocellulosic materials into biographite using iron and nickel catalyst,†Processes, vol. 9, no. 6, 2021, doi: 10.3390/pr9061079.

E. H. Sujiono et al., “Graphene oxide based coconut shell waste: synthesis by modified Hummers method and characterization,†Heliyon, vol. 6, no. 8, p. e04568, 2020, doi: 10.1016/j.heliyon.2020.e04568.

R. Othman, A. S. Kamal, and N. H. Jabarullah, “The effect of changing graphitization temperature toward bio-graphite from Palm Kernel Shell,†Prod. Eng. Arch., vol. 27, no. 2, pp. 124–129, 2021, doi: 10.30657/pea.2021.27.16.

O. G. Duliu, V. Bercu, and D. C. Negut, Mn2+ EPR spectroscopy for the provenance study of natural carbonates, 1st ed., vol. 50. Elsevier Inc., 2019.

J. F. W. Bowles, “Oxides,†in Encyclopedia of Geology, 2nd ed., Elsevier Inc., 2021, pp. 428–441.

A. Gómez-Armesto et al., “Patterning total mercury distribution in coastal podzolic soils from an Atlantic area: Influence of pedogenetic processes and soil components,†Catena, vol. 206, pp. 1–14, 2021, doi: 10.1016/j.catena.2021.105540.

L. Gfeller, J. N. Caplette, A. Frossard, and A. Mestrot, “Organo-mercury species in a polluted agricultural flood plain: Combining speciation methods and polymerase chain reaction to investigate pathways of contamination,†Environ. Pollut., vol. 311, no. July, p. 119854, 2022, doi: 10.1016/j.envpol.2022.119854.

M. Adnan, B. Xiao, P. Xiao, P. Zhao, R. Li, and S. Bibi, “Research Progress on Heavy Metals Pollution in the Soil of Smelting Sites in China,†Toxics, vol. 10, no. 5, pp. 1–30, 2022, doi: 10.3390/toxics10050231.




DOI: http://dx.doi.org/10.18517/ijaseit.13.5.18429

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development