ZnO Nanostructure Synthesized by Hydrothermal Method for Butane Gas Sensor

Abrar Ismardi, Vivia Puji Lestari, Nor Hakimin Abdullah, Indra Wahyudin Fathona, Theresia Deviyana Gunawan

Abstract


Zinc oxide (ZnO) nanostructure was successfully synthesized on an alumina substrate by the hydrothermal method. The hydrothermal method consists of two stages: the preparation of seeding layers and the growth of ZnO nanostructures. 0.4 M Zinc Acetate Dihydrate (Zn(CH3COO)2·2H2O) and 3 M Sodium Hydroxide (NaOH) were used as precursors. The hydrothermal process was carried out at 90 °C for 4 hours. Morphological characterization of ZnO nanostructures was conducted by using Scanning Electron Microscope (SEM). The result produces a diameter of 60-80 nm and a length of 600-800 nm in the form of nanoflowers. The crystal and crystalline structure were studied with XRD, and it was shown that the ZnO nanostructure is a wurtzite structure in the form of a hexagonal shape and has a crystallite size of 59 nm. After conducting electrical characterization, it was shown that the current is directly proportional to the voltage, forming an ohmic contact curve. ZnO nanostructures have the potential to be applied as a gas sensor since the good response indicated the presence of butane gas. It is clarified that the nanostructure with a flow rate of 200 mL/min has a change in resistance of 0.17 MΩ/s with a recovery time of 30 seconds when it is exposed to butane gas for one minute. ZnO nanostructures also have a sensitivity change of 0.000495 MΩ/mL in the gas flow rate range of 50-250 mL/min.

Keywords


ZnO; hydrothermal; nanostructure; nanoflowers; gas sensor; butane classification numbers

Full Text:

PDF

References


S. Oh, T. H. Lee, M. S. Chae, J. H. Park, and T. G. Kim, “Performance improvements of ZnO thin film transistors with reduced graphene oxide-embedded channel layers,†J Alloys Compd, vol. 777, pp. 1367–1374, Mar. 2019, doi: 10.1016/j.jallcom.2018.11.004.

S. Raha and M. Ahmaruzzaman, “ZnO nanostructured materials and their potential applications: progress, challenges and perspectives,†Nanoscale Advances, vol. 4, no. 8. Royal Society of Chemistry, pp. 1868–1925, Mar. 09, 2022. doi: 10.1039/d1na00880c.

V. S. Bhati, M. Hojamberdiev, and M. Kumar, “Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review,†Energy Reports, vol. 6. Elsevier Ltd, pp. 46–62, Feb. 01, 2020. doi: 10.1016/j.egyr.2019.08.070.

M. Aleksanyan, A. Sayunts, V. Aroutiounian, G. Shahkhatuni, Z. Simonyan, and G. Shahnazaryan, “Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor,†Chemosensors, vol. 10, no. 7, Jul. 2022, doi: 10.3390/chemosensors10070245.

P. Wang, T. Dong, C. Jia, and P. Yang, “Ultraselective acetone-gas sensor based ZnO flowers functionalized by Au nanoparticle loading on certain facet,†Sens Actuators B Chem, vol. 288, pp. 1–11, Jun. 2019, doi: 10.1016/j.snb.2019.02.095.

G. Ren et al., “ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing,†Sens Actuators B Chem, vol. 284, pp. 421–427, Apr. 2019, doi: 10.1016/j.snb.2018.12.145.

G. H. Mhlongo, D. E. Motaung, F. R. Cummings, H. C. Swart, and S. S. Ray, “A highly responsive NH3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach,†Sci Rep, vol. 9, no. 1, Dec. 2019, doi: 10.1038/s41598-019-46247-z.

S. S. Nkosi et al., “The effect of stabilized ZnO nanostructures green luminescence towards LPG sensing capabilities,†Mater Chem Phys, vol. 242, Feb. 2020, doi: 10.1016/j.matchemphys.2019.122452.

A. Sáaedi, P. Shabani, and R. Yousefi, “High performance of methanol gas sensing of ZnO/PAni nanocomposites synthesized under different magnetic field,†J Alloys Compd, vol. 802, pp. 335–344, Sep. 2019, doi: 10.1016/j.jallcom.2019.06.088.

A. Rinaldi et al., “A simple ball milling and thermal oxidation method for synthesis of zno nanowires decorated with cubic zno2 nanoparticles,†Nanomaterials, vol. 11, no. 2, pp. 1–15, Feb. 2021, doi: 10.3390/nano11020475.

H. S. M. Abd-Rabboh, M. Eissa, S. K. Mohamed, and M. S. Hamdy, “Synthesis of ZnO by thermal decomposition of different precursors: Photocatalytic performance under UV and visible light illumination,†Mater Res Express, vol. 6, no. 5, 2019, doi: 10.1088/2053-1591/ab04ff.

N. B. Mahmood, F. R. Saeed, K. R. Gbashi, and U. S. Mahmood, “Synthesis and characterization of zinc oxide nanoparticles via oxalate co-precipitation method,†Materials Letters: X, vol. 13, Mar. 2022, doi: 10.1016/j.mlblux.2022.100126.

R. Wang, “Liquid-Phase Synthesis of Nano-Zinc Oxide and Its Photocatalytic Property,†Int J Anal Chem, vol. 2022, pp. 1–9, Jun. 2022, doi: 10.1155/2022/6977424.

G. Ren et al., “ZnO@ZIF-8 core-shell microspheres for improved ethanol gas sensing,†Sens Actuators B Chem, vol. 284, pp. 421–427, Apr. 2019, doi: 10.1016/j.snb.2018.12.145.

A. A. Ruba, L. M. Johny, N. S. Nirmala Jothi, and P. Sagayaraj, “ScienceDirect Solvothermal Synthesis, Characterization and Photocatalytic activity of ZnO Nanoparticle,†2019. [Online]. Available: www.sciencedirect.com

C. Wang et al., “In situ synthesis of flower-like ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature,†Sens Actuators B Chem, vol. 292, pp. 270–276, Aug. 2019, doi: 10.1016/j.snb.2019.04.140.

K. R. Ahammed et al., “Microwave assisted synthesis of zinc oxide (ZnO) nanoparticles in a noble approach: utilization for antibacterial and photocatalytic activity,†SN Appl Sci, vol. 2, no. 5, May 2020, doi: 10.1007/s42452-020-2762-8.

S. Mohan, M. Vellakkat, A. Aravind, and U. Reka, “Hydrothermal synthesis and characterization of Zinc Oxide nanoparticles of various shapes under different reaction conditions,†Nano Express, vol. 1, no. 3, Dec. 2020, doi: 10.1088/2632-959X/abc813.

M. Aleksanyan, A. Sayunts, V. Aroutiounian, G. Shahkhatuni, Z. Simonyan, and G. Shahnazaryan, “Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor,†Chemosensors, vol. 10, no. 7, Jul. 2022, doi: 10.3390/chemosensors10070245.

M. H. Asadiyan, S. Parhoodeh, and S. Nazem, “Simulation and fabrication of butane gas sensor based on surface plasmon resonance phenomenon,†Optik (Stuttg), vol. 256, Apr. 2022, doi: 10.1016/j.ijleo.2022.168738.

L. Ge, X. Mu, G. Tian, Q. Huang, J. Ahmed, and Z. Hu, “Current Applications of Gas Sensor Based on 2-D Nanomaterial: A Mini Review,†Frontiers in Chemistry, vol. 7. Frontiers Media S.A., Dec. 10, 2019. doi: 10.3389/fchem.2019.00839.

A. Mirzaei, H. R. Ansari, M. Shahbaz, J. Y. Kim, H. W. Kim, and S. S. Kim, “Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies,†Chemosensors, vol. 10, no. 7. MDPI, Jul. 01, 2022. doi: 10.3390/chemosensors10070289.

M. A. Franco, P. P. Conti, R. S. Andre, and D. S. Correa, “A review on chemiresistive ZnO gas sensors,†Sensors and Actuators Reports, vol. 4, Nov. 2022, doi: 10.1016/j.snr.2022.100100.

Y. Kong et al., “SnO2 nanostructured materials used as gas sensors for the detection of hazardous and flammable gases: A review,†Nano Materials Science, 2021, doi: 10.1016/j.nanoms.2021.05.006.

J. Xiao et al., “Synthesis of WO3 nanorods and their excellent ethanol gas-sensing performance,†Materials Research, vol. 24, no. 3, Mar. 2021, doi: 10.1590/1980-5373-MR-2020-0434.

A. Afzal, “β-Ga2O3 nanowires and thin films for metal oxide semiconductor gas sensors: Sensing mechanisms and performance enhancement strategies,†Journal of Materiomics, vol. 5, no. 4. Chinese Ceramic Society, pp. 542–557, Dec. 01, 2019. doi: 10.1016/j.jmat.2019.08.003.

J. Malallah Rzaij and A. Mohsen Abass, “Review on: TiO2 Thin Film as a Metal Oxide Gas Sensor,†Journal of Chemical Reviews, vol. 2, no. 2, pp. 114–121, Mar. 2020, doi: 10.33945/SAMI/JCR.2020.2.4.

P. Karnati1, A. Akbar1, and P. A. Morris1, “Conduction Mechanisms in One Dimensional Core-Shell Nanostructures for Gas Sensing: A Review,†2019.

D. K. Sharma, S. Shukla, K. K. Sharma, and V. Kumar, “A review on ZnO: Fundamental properties and applications,†in Materials Today: Proceedings, Elsevier Ltd, 2020, pp. 3028–3035. doi: 10.1016/j.matpr.2020.10.238.

A. Klinbumrung, R. Panya, A. Pung-Ngama, P. Nasomjai, J. Saowalakmeka, and R. Sirirak, “Green synthesis of ZnO nanoparticles by pineapple peel extract from various alkali sources,†Journal of Asian Ceramic Societies, vol. 10, no. 4, pp. 755–765, 2022, doi: 10.1080/21870764.2022.2127504.

S. Navale, M. Shahbaz, A. Mirzaei, S. S. Kim, and H. W. Kim, “Effect of ag addition on the gas-sensing properties of nanostructured resistive-based gas sensors: An overview,†Sensors, vol. 21, no. 19. MDPI, Oct. 01, 2021. doi: 10.3390/s21196454.

M. Aleksanyan, A. Sayunts, V. Aroutiounian, G. Shahkhatuni, Z. Simonyan, and G. Shahnazaryan, “Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor,†Chemosensors, vol. 10, no. 7, Jul. 2022, doi: 10.3390/chemosensors10070245.

V. S. Bhati, M. Hojamberdiev, and M. Kumar, “Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review,†Energy Reports, vol. 6. Elsevier Ltd, pp. 46–62, Feb. 01, 2020. doi: 10.1016/j.egyr.2019.08.070.

S. Pati, A. Maity, P. Banerji, and S. B. Majumder, “Temperature dependent donor-acceptor transition of ZnO thin film gas sensor during butane detection,†Sens Actuators B Chem, vol. 183, pp. 172–178, 2013, doi: 10.1016/j.snb.2013.03.120.




DOI: http://dx.doi.org/10.18517/ijaseit.13.3.18419

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development