Optimization and Analysis of Polyhydroxyalkanoate (PHA) by Bacillus sp. Strain CL33 and Bacillus flexus Strain S5a from Palm Oil Mill Waste

Nur Haedar, Mutia Putri Jamaluddin, - Fahruddin, Zaraswati Dwyana, Zarlina Zainuddin, Fuad Gani, Mustika Tuwo

Abstract


Polyhydroxyalkanoate (PHA) is a biodegradable polymer that microorganisms can synthesize amidst non-optimal growth conditions with excess carbon sources. Palm oil, rich in fatty acids, serves as a carbon source for PHA synthesis. The bacterial PHA production can be influenced by carbon concentration in the growth medium. Therefore, determining the optimal concentration of palm oil as a carbon source is crucial for PHA production. Additionally, it is possible to determine the type of PHA generated by bacteria, which can then be utilized as information when processing utilizing the PHA. The experiment employed palm oil concentrations of 0.5%, 1%, and 2% and was carried out for periods of 48, 72, 96 hours. It was discovered that Bacillus sp. strain CL33 and Bacillus flexus strain S5a produced the most effective PHA at a concentration of 25 with an incubation period of 96 hours. The PHA generated by these bacteria was quantitatively analyzed through measurements of total bacterial growth, cell dry weight, and the levels of crotonic acid. PHA types were also analyzed using GC-MS, with monomers including 2-hydroxybutyrate(-2HB), 2-hydroxy-3-phenylpropionate (2H3PhP), 3-Hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3H2O), and 3-hydroxydecanoate (3HD). The Bacillus sp. strain CL33 yielded a PHA level of 92.23%. Meanwhile, Bacillus flexus strain S5a synthesized a polyhydroxyalkanoate comprising mostly 3-hydroxyhexanoate (3HHx) and polydimethylsiloxane (PDMS). The monomers used were decamethyltetrasiloxane, dodecamethylpentasiloxane, hexamethylcyclotrisiloxane, octamethylpentasiloxane, and dodecamethylcyclohexasiloxane. The type of PHA produced accounted for 85.93% of the total.

Keywords


Bacillus flexus S5a; Bacillus sp. CL33; polyhydroxyalkanoate; palm oil

Full Text:

PDF

References


J. Y. Boey, L. Mohamad, Y. Sen Khok, G. S. Tay, and S. Baidurah, “A review of the applications and biodegradation of polyhydroxyalkanoates and poly(lactic acid) and its composites,†Polymers, vol. 13, no. 10, May. 2021. doi: 10.3390/polym13101544.

N. Darus, M. Tamimi, S. Tirawaty, M. Muchtazar, D. Trisyanti, R. Akib, D. Condorini, and K. Ranggi, “An overview of plastic waste recycling in the urban areas of java island in Indonesia,†Journal of Environmental Science and Sustainable Development, vol. 3, no. 2, pp. 402–415, Dec. 2020. doi: 10.7454/jessd.v3i2.1073.

Z. S. Mazhandu, E. Muzenda, T. A. Mamvura, M. Belaid, and T. Nhubu, “Integrated and consolidated review of plastic waste management and bio-based biodegradable plastics: Challenges and opportunities,†Sustainability (Switzerland), vol. 12, no. 20, pp. 1–57, Oct. 2020. doi: 10.3390/su12208360.

S. Jeremic, J. Milovanovic, M. Mojicevic, S. S. Bogojevic, and J. Nikodinovic-Runic, “Understanding bioplastic materials - Current state and trends,†Journal of the Serbian Chemical Society, vol. 85, no. 12, pp. 1507–1538, Dec. 2020. doi: 10.2298/JSC200720051J.

B. Dalton, P. Bhagabati, J. De Micco, R. B. Padamati, and K. O’Connor, “A review on biological synthesis of the biodegradable polymers polyhydroxyalkanoates and the development of multiple applications,†Catalysts, vol. 12, no. 3, pp. 1-44, Mar. 2022. doi: 10.3390/catal12030319.

L. Simó-Cabrera, S. García-Chumillas, N. Hagagy, A. Saddiq, H. Tag, S. Selim, H. AbdElgawad, A. A. Agüero, F. M. Sánchez, V. Cánovas, C. Pire, and R. M. Martínez-Espinosa, “Haloarchaea as cell factories to produce bioplastics,†Marine Drugs, vol. 19, no. 159, pp. 1-28, Mar. 2021. doi: 10.3390/MD19030159.

P. K. Obulisamy and S. Mehariya, “Polyhydroxyalkanoates from extremophiles: A review,†Bioresource Technology, vol. 325, p. 124653, Apr. 2021. doi: 10.1016/j.biortech.2020.124653.

S. Riaz, K. Y. Rhee, and S. J. Park, “Polyhydroxyalkanoates (PHAs): Biopolymers for biofuel and biorefineries,†Polymers (Basel), vol. 13, no. 2, pp. 1–21, Jan. 2021. doi: 10.3390/polym13020253.

G. Madhusoodanan, R. C. Hariharapura, and D. Somashekara, “Dissolved oxygen as a propulsive parameter for polyhydroxyalkanoate production using Bacillus endophyticus cultures,†Environ Dev Sustain, vol. 24, no. 4, pp. 4641–4658, Jul. 2022. doi: 10.1007/s10668-021-01626-3.

A. Surendran, M. Lakshmanan, J. Y. Chee, A. M. Sulaiman, D. V. Thuoc, K. Sudesh, “Can polyhydroxyalkanoates be produced efficiently from waste plant and animal oils?,†Frontiers in Bioengineering and Biotechnology, vol. 8, no. 169, pp. 1-15, Mar. 2020. doi: 10.3389/fbioe.2020.00169.

S. M. Hamdy, A. W. Danial, S. M. F. Gad El-Rab, A. A. M. Shoreit, and A. El-latif Hesham, “Production and optimization of bioplastic (Polyhydroxybutyrate) from Bacillus cereus strain SH-02 using response surface methodology,†BMC Microbiol, vol. 22, no. 183, pp. 1–16, Jul. 2022. doi: 10.1186/s12866-022-02593-z.

R. Mitra, T. Xu, H. Xiang, and J. Han, “Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory,†Microb Cell Fact, vol. 19, no. 86, pp. 1–30, Apr. 2020. doi: 10.1186/s12934-020-01342-z.

I. G. Afghan and A. Shrivastav, “Isolation and screening of polyhydroxyalkanoates (PHA) producing bacteria utilizing agricultural waste,†Int J Appl Sci Biotechnol, vol. 8, no. 3, pp. 336–342, Sep. 2020. doi: 10.3126/ijasbt.v8i3.31566.

R. Mitra, T. Xu, G. Q. Chen, H. Xiang, and J. Han, “An updated overview on the regulatory circuits of polyhydroxyalkanoates synthesis,†Microbial Biotechnology, vol. 15, no. 5, pp. 1446–1470, Sep. 2022. doi: 10.1111/1751-7915.13915.

B. Gutschmann, M. M. Simoes, T. Schiewe, E. S. Schroter, M. Munzberg, P. Neubauer, A. Bockisch, and S. L. Riedel, “Continuous feeding strategy for polyhydroxyalkanoate production from solid waste animal fat at laboratory- and pilot-scale,†Microb Biotechnol, vol. 16, no. 2, pp. 295–306, Aug. 2023, doi: 10.1111/1751-7915.14104.

D. Vicente, D. N. Proença, and P. V. Morais, “The role of bacterial polyhydroalkanoate (PHA) in a sustainable future: A review on the biological diversity,†International Journal of Environmental Research and Public Health, vol. 20, no. 4, p. 2959, Feb. 2023. doi: 10.3390/ijerph20042959.

W. Zhou, S. Bergsma, D. I. Colpa, G. J. W. Euverink, and J. Krooneman, “Polyhydroxyalkanoates (PHAs) synthesis and degradation by microbes and applications towards a circular economy,†Journal of Environmental Management, vol. 341, pp. 1-13, Sep. 2023. doi: 10.1016/j.jenvman.2023.118033.

J. R. Gómez-Cardozo, R. Velasco-Bucheli, N. Marín-Pareja, O. S. Ruíz-Villadiego, G. A. Correa-Londoño, and A. L. Mora-Martínez, “Fed-batch production and characterization of polyhydroxybutyrate by Bacillus megaterium LVN01 from residual glycerol,†DYNA (Colombia), vol. 87, no. 214, pp. 111–120, May. 2020, doi: 10.15446/dyna.v87n214.83523

J. Mascarenhas and K. Aruna, “Production and optimization of polyhydroxyalkaonoate obtained from Bacillus megaterium JHA,†Journal of Applied Biotechnology Reports, vol. 8, no. 4, pp. 346–360, Dec. 2021. doi: 10.30491/jabr.2020.242493.1263.

S. Mohammed and L. Ray, “Polyhydroxyalkanoate recovery from newly screened Bacillus sp. LPPI-18 using various methods of extraction from Loktak Lake sediment sample,†Journal of Genetic Engineering and Biotechnology, vol. 20, p. 115, Aug. 2022. doi: 10.1186/s43141-022-00392-7.

D. H. Vu, S. Wainaina, M. J. Taherzadeh, D. Åkesson, and J. A. Ferreira, “Production of polyhydroxyalkanoates (PHAs) by Bacillus megaterium using food waste acidogenic fermentation-derived volatile fatty acids,†Bioengineered, vol. 12, no. 1, pp. 2480–2498, Jun. 2021. doi: 10.1080/21655979.2021.1935524.

M. Geethu, H. R. Chandrashekar, and M. S. Divyashree, “Statistical optimisation of polyhydroxyalkanoate production in Bacillus endophyticus using sucrose as sole source of carbon,†Arch Microbiol, vol. 203, no. 10, pp. 5993–6005, Sep. 2021. doi: 10.1007/s00203-021-02554-6.

N. Haedar, D. Suherman, Z. Dwyana, Heriadi, and M. Masri, “The potency of bioplastic polyhydroxyalkanoate (PHA) producing bacteria isolated from palm oil mill waste,†Elkawnie: Journal of Islamic Science and Technology, vol. 8, no. 1, pp. 93–107, Jun. 2022. doi: 10.22373/ekw.v8i1.11145.

H. Javaid, A. Nawaz, N. Riaz, H. Mukhtar, I. Ul-Haq, K. A. Shah, H. Khan, S. M. Nawvi, S. Shakoor, A. Rasool, K. Ullah, R. Manzoor, I. Kaleem, and G. Murtaza, “Valorization of biomass and synthetic waste,†Molecules, vol. 25, no. 23, p. 5539, Nov. 2020. doi: 10.3390/molecules25235539

T. Khamkong, W. Penkhrue, and S. Lumyong, “Optimization of production of polyhydroxyalkanoates (PHAs) from newly isolated Ensifer sp. Strain HD34 by Response Surface Methodology,†Processes, vol. 10, no. 8, Aug. 2022. doi: 10.3390/pr10081632.

D. Li, M. Gao, Y. Qiu, X. Ma, F. Wang, J. Li, and L. Yu, “Strategy for economical and enhanced polyhydroxyalkanoate production from synergistic utilization of palm oil and derived wastewater by activated sludge,†Bioresour Technol, vol. 370, p. 128581, Feb. 2023, doi: 10.1016/j.biortech.2023.128581

B. A. Ramsay, K. Lomaliza, C. Chavarie, B. Dube, P. Bataille, and J. A. Ramsay, “Production of poly-(β-hydroxybutyric-co-β-hydroxyvaleric) acids,†vol. 56, no. 7, pp. 2093–2098, Jul. 1990. doi: 10.1128/aem.56.7.2093-2098.1990

P. J. Senior, G. A. Beech, G. A. F. Ritchiet, and E. A. Dawes, “The role of oxygen limitation in the formation of poly-p-hydroxybutyrate during batch and continuous culture of Azotobacter beijerinckii,†Biochem J, vol. 128, no. 5, pp. 1193-1201, Aug. 1972. doi: 10.1042/bj1281193

Y. Zhang, W. Sun, H. Wang, and A. Geng, “Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11,†Bioresour Technol, vol. 147, pp. 307–314, Nov. 2013, doi: 10.1016/j.biortech.2013.08.029.

F. Verdini, S. Tabasso, F. Mariatti, F. Bosco, C. Mollea, E. C. Gaudino, A. Cirio, and G. Cravotto, “From agri-food wastes to polyhydroxyalkanoates through a sustainable process,†fermentation, vol. 8, no. 10, pp. 1-18, Oct. 2022. doi: 10.3390/fermentation8100556.

A. B. Devi, C. V. Nachiyar, T. Kaviyarasi, and A. V Samrot, “Characterization of polyhydroxybutyrate synthesized by Bacillus cereus,†Int J Pharm Pharm Sci, vol. 7, no. 3, pp. 140–144, Jan. 2015. ISSN-0975-1491

F. Crisafi, F. Valentino, F. Micolucci, and R. Denaro, “From organic wastes and hydrocarbons pollutants to polyhydroxyalkanoates: bioconversion by terrestrial and marine bacteria,†Sustainability, vol. 14, no. 14, pp. 1–29, Jul. 2022. doi: 10.3390/su14148241

A. T. Ubando, C. B. Felix, and W. H. Chen, “Biorefineries in circular bioeconomy: A comprehensive review,†Bioresource Technology, vol. 299, p. 122585, Mar. 2020. doi: 10.1016/j.biortech.2019.122585.

E. Gesteiro, L. Guijarro, F. J. Sanchez-Muniz, M. C. Vidal-Carou, A. Troncoso, L. Venanci, Vicente Jimeno, J. Quilez, A. Anadon, and M. Gonzalez-Gross, “Palm oil on the edge,†Nutrients, vol. 11, no. 9, pp. 1–36, Aug. 2019. doi: 10.3390/nu11092008

S. Shah and A. Kumar, “Production and characterization of polyhydroxyalkanoates from industrial waste using soil bacterial isolates,†Braz J Microbiol, vol. 52, no. 2, pp. 715-726, Jun. 2021. doi: 10.1007/s42770-021-00452-z/Published.

J. H. C. Chin, M. R. Samian, and Y. M. Normi, “Characterization of polyhydroxyalkanoate production capacity, composition and weight synthesized by Burkholderia cepacia JC-1 from various carbon sources,†Heliyon, vol. 8, no. 3, pp. 1-11, Mar. 2022. doi: 10.1016/j.heliyon.2022.e09174.

T. Sriyapai, T. Chuarung, K. Kimbara, S. Samosorn, and P. Sriyapai, “Production and Optimization of polyhydroxyalkanoates (PHAs) from Paraburkholderia sp. PFN 29 under submerged fermentation,†Electronic Journal of Biotechnology, vol. 56, pp. 1–11, Mar. 2022. doi: 10.1016/j.ejbt.2021.12.003.

N. O. Zhila, K. Y. Sapozhnikova, E. G. Kiselev, A. D. Vasiliev, I. V. Nemtsev, E. I. Shishatskaya, and T. G. Volova, “Properties of degradable polyhydroxyalkanoates (PHAs) synthesized by a new strain, Cupriavidus necator IBP/SFU-1, from various carbon sources,†Polymers (Basel), vol. 13, no. 18, pp. 1-19, Sep. 2021. doi: 10.3390/polym13183142.

D. Correa-Galeote, L. Argiz, A. Val del Rio, A. Mosquera-Corral, B. Juarez-Jimenez, J. Gonzales-Lopez, and B. Rodelas, “Dynamics of PHA-accumulating bacterial communities fed with lipid-rich liquid effluents from fish-canning industries,†Polymers (Basel), vol. 14, no. 7, pp. 1–22, Mar. 2022. doi: 10.3390/polym14071396.

R. Sohail, N. Jamil, I. Ali, and S. Munir, “Animal fat and glycerol bioconversion to polyhydroxyalkanoate by produced water bacteria,†e-Polymers, vol. 20, pp. 92–102, Mar. 2020. doi: 10.1515/epoly-2020-0011

D. M. Miu, M. C. Eremia, and M. Moscovici, “Polyhydroxyalkanoates (PHAs) as biomaterials in tissue engineering: production, isolation, characterization,†Materials, vol. 15, no. 4, Feb. 2022. doi: 10.3390/ma15041410.

N. O. Zhila, K. Y. Sapozhnikova, E. G. Kiselev, E. I. Shishatskaya, and T. G. Volova, “Synthesis and properties of polyhydroxyalkanoates on waste fish oil from the production of canned sprats,†Processes, vol. 11, no. 7, Jul. 2023. doi: 10.3390/pr11072113.

M. Ishii-Hyakutake, S. Mizuno, and T. Tsuge, “Biosynthesis andcharacteristics of aromatic polyhydroxyalkanoates,†Polymers (Basel), vol. 10, no. 11, pp. 1–24, Nov. 2018. doi: 10.3390/polym10111267.

P. Tanikkul, G. L. Sullivan, S. Sarp, and N. Pisutpaisal, “Biosynthesis of medium chain length polyhydroxyalkanoates (mcl-PHAs) from palm oil,†Case Studies in Chemical and Environmental Engineering, vol. 2, no. 100045, p. 1-5, Sep. 2020. doi: 10.1016/j.cscee.2020.100045.




DOI: http://dx.doi.org/10.18517/ijaseit.13.6.18418

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development