A Novel Ameliorant Biochar of Areca Nuts Skin and Sago Bark Waste for Increasing Soil Chemical Fertility

Febrianti Rosalina, Ihsan Febriadi


The waste of areca nuts skin and sago bark are alternatives of ameliorant material that can be used to support soil quality improvement. This research aims to study the potential of areca nuts and sago bark to be produced as biochar and to identify the chemical components they contain. The study employed a Completely Randomized Designed involving six treatments repeated three times. The observation parameters of soil chemical analysis, including the measurement of pH H2O (pH meter); Total-N (Kjeldahl); Available-P (Bray I); Exchangeable Cations (NH4OAC pH 7.0); and exchangeable-Al (KCl 1N). Data obtained from observation were statistically analyzed through the ANOVA method, and if they had a significant effect, the analysis was continued with Duncan’s Multiple Range Test (DMRT) at the level of α=5%. Findings showed that the administration of biochar can improve soil quality. Based on the analysis, biochar from sago bark waste brings a significant effect on increases of pH (5.26), available-P (12.99 cmol+kg-), Exchangeable-K (2.16 cmol+kg-), Exchangeable-Na (0.21 cmol+kg-), Exchangeable-Ca (4.83 cmol+kg-), Exchangeable-Mg (3.80 cmol+kg-), and the reduction of soil Exchangeable-Al (6.65 cmol+kg-). In comparison, biochar from betel nut peel waste has a significant effect on Total-N (0.15%), C-organic (1.66%), and CEC (23.38 cmol+kg-). The results of this study will be the basis for further research in utilizing agricultural waste so that the right combination of fertilizers is obtained to increase soil fertility and will indirectly increase crop production, especially in West Papua.


Ameliorant; areca nuts skin; biochar; sago bark; waste

Full Text:



F. D. Korwa, J. Husain, T. Titah, and J. Supit, “Evaluasi Kesesuaian Lahan untuk Tanaman Pinang (Areca catechu) di Das Remu, Sorong, Papua Barat,†Cocos, vol. 7, no. 4, pp. 1–8, 2016, doi: 10.35791/cocos.v7i4.12602.

N. R. Yanti, M. Andika, S. Maulida, Riani, I. Sulaiman, and N. M. Erfiza, “Utilization of areca nut (Arecha chatechu L.) extract for tannin based colorimetric indicator in smart packaging,†IOP Conf. Ser. Earth Environ. Sci., vol. 951, no. 1, pp. 1–7, 2022, doi: 10.1088/1755-1315/951/1/012057.

F. F. Sidiq, D. Coles, C. Hubbard, B. Clark, and L. J. Frewer, “Sago and the indigenous peoples of Papua, Indonesia: A review,†J. Agric. Appl. Biol., vol. 2, no. 2, pp. 138–149, 2021, doi: 10.11594/jaab.02.02.08.

S. K. Uda, L. Hein, and A. Adventa, “Towards better use of Indonesian peatlands with paludiculture and low-drainage food crops,†Wetl. Ecol. Manag., vol. 28, no. 3, pp. 509–526, 2020, doi: 10.1007/s11273-020-09728-x.

J. Putinella, Y. Nuraini, and B. Prasetya, “Nitrogen released from mixtures of sago pulp waste and Gliricidia sepium pruning on a Dystrudept of Central Moluccas and its effect on maize growth of maize,†J. Degrad. Min. Lands Manag., vol. 9, no. 2, pp. 3341–3347, 2022, doi: 10.15243/jdmlm.2022.092.3341.

K. M. T. Sulok et al., “Chemical and biological characteristics of organic amendments produced from selected agro-wastes with potential for sustaining soil health: A laboratory assessment,†Sustain., vol. 13, no. 9, pp. 1–15, 2021, doi: 10.3390/su13094919.

H. P. Wardono, A. Agus, A. Astuti, N. Ngadiyono, and B. Suhartanto, “Potential of sago hampas for ruminants feed,†E3S Web Conf., vol. 306, p. 05012, 2021, doi: 10.1051/e3sconf/202130605012.

N. C. Tiven and T. M. Simanjorang, “Effect of urea in steamed sago waste on rumen fermentation parameters in vitro tested,†in IOP Conference Series: Earth and Environmental Science, 2021, vol. 883, no. 1, doi: 10.1088/1755-1315/883/1/012054.

A. L. W. Jampi, S. F. Chin, M. E. Wasli, and C. H. Chia, “Preparation of Cellulose Hydrogel from Sago Pith Waste as a Medium for Seed Germination,†J. Phys. Sci., vol. 32, no. 1, pp. 13–26, 2021, doi: 10.21315/JPS2021.32.1.2.

N. K. Mohamad Fathi, M. F. Mohamad Bukhori, S. M. Abd Aziz Abdullah, R. Wahi, M. A. Zailani, and M. M. Raja Gopal, “Effect OF Sago Bark Biochar Application on Capsicum annuum L. var. Kulai Growth and Fruit Yield,†Malaysian Appl. Biol., vol. 51, no. 3, pp. 127–135, 2022, doi: 10.55230/mabjournal.v51i3.2191.

K. Thangavelu, P. Sundararaju, N. Srinivasan, and S. Uthandi, “Bioconversion of sago processing wastewater into biodiesel: Optimization of lipid production by an oleaginous yeast, Candida tropicalis ASY2 and its transesterification process using response surface methodology,†Microb. Cell Fact., vol. 20, no. 1, pp. 1–18, 2021, doi: 10.1186/s12934-021-01655-7.

R. K. Srivastava, N. P. Shetti, K. R. Reddy, E. E. Kwon, M. N. Nadagouda, and T. M. Aminabhavi, “Biomass utilization and production of biofuels from carbon neutral materials,†Environ. Pollut., vol. 276, p. 116731, 2021, doi: 10.1016/j.envpol.2021.116731.

H. Siruru, W. Syafii, I. N. J. Wistara, G. Pari, and I. Budiman, “Properties of Sago waste charcoal using hydrothermal and pyrolysis carbonization,†Biomass Convers. Biorefinery, 2020, doi: 10.1007/s13399-020-00983-9.

D. Spanu, G. Binda, C. Dossi, and D. Monticelli, “Biochar as an alternative sustainable platform for sensing applications: A review,†Microchem. J., vol. 159, no. June, p. 105506, 2020, doi: 10.1016/j.microc.2020.105506.

H. Herviyanti, A. Maulana, S. Prima, A. Aprisal, S. D. Crisna, and A. L. Lita, “Effect of biochar from young coconut waste to improve chemical properties of ultisols and growth coffee [Coffea arabica L.] plant seeds,†in IOP Conference Series: Earth and Environmental Science, 2020, vol. 497, no. 1, doi: 10.1088/1755-1315/497/1/012038.

S. Wu, Y. Zhang, Q. Tan, X. Sun, W. Wei, and C. Hu, “Biochar is superior to lime in improving acidic soil properties and fruit quality of Satsuma mandarin,†Sci. Total Environ., vol. 714, p. 136722, 2020, doi: 10.1016/j.scitotenv.2020.136722.

A. Abbas et al., “Efficiency of wheat straw biochar in combination with compost and biogas slurry for enhancing nutritional status and productivity of soil and plant,†Plants, vol. 9, no. 11, pp. 1–19, 2020, doi: 10.3390/plants9111516.

A. Karimi, A. Moezzi, M. Chorom, and N. Enayatizamir, “Application of Biochar Changed the Status of Nutrients and Biological Activity in a Calcareous Soil,†J. Soil Sci. Plant Nutr., vol. 20, no. 2, pp. 450–459, 2020, doi: 10.1007/s42729-019-00129-5.

M. Â. Rodrigues et al., “Nitrogen Use Efficiency and Crop Yield in Four Successive Crops Following Application of Biochar and Zeolites,†J. Soil Sci. Plant Nutr., vol. 21, no. 2, pp. 1053–1065, 2021, doi: 10.1007/s42729-021-00421-3.

W. Zhao, Q. Zhou, Z. Tian, Y. Cui, Y. Liang, and H. Wang, “Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain,†Sci. Total Environ., vol. 722, p. 137428, 2020, doi: 10.1016/j.scitotenv.2020.137428.

P. Pokharel and S. X. Chang, “Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels,†J. Environ. Manage., vol. 295, no. June, p. 113080, 2021, doi: 10.1016/j.jenvman.2021.113080.

S. Mansoor et al., “Chemosphere Biochar as a tool for effective management of drought and heavy metal toxicity,†Chemosphere, vol. 271, p. 129458, 2021, doi: 10.1016/j.chemosphere.2020.129458.

M. Liang, L. Lu, H. He, J. Li, Z. Zhu, and Y. Zhu, “Applications of biochar and modified biochar in heavy metal contaminated soil: A descriptive review,†Sustain., vol. 13, no. 24, pp. 1–18, 2021, doi: 10.3390/su132414041.

J. Zhang, Z. Tan, and Q. Huang, “Study on principles and mechanisms of new biochar passivation of cadmium in soil,†Biochar, vol. 3, no. 2, pp. 161–173, 2021, doi: 10.1007/s42773-021-00088-0.

A. Taraqqi-A-kamal et al., “Biochar remediation of soil: Linking biochar production with function in heavy metal contaminated soils,†Plant, Soil Environ., vol. 67, no. 4, pp. 183–201, 2021, doi: 10.17221/544/2020-PSE.

T. Kocsis, Z. Kotroczó, L. Kardos, and B. Biró, “Optimization of increasing biochar doses with soil–plant–microbial functioning and nutrient uptake of maize,†Environ. Technol. Innov., vol. 20, p. 101191, 2020, doi: 10.1016/j.eti.2020.101191.

A. A. Karim et al., “Enrichment of primary macronutrients in biochar for sustainable agriculture: A review,†Crit. Rev. Environ. Sci. Technol., vol. 52, no. 9, pp. 1449–1490, 2022, doi: 10.1080/10643389.2020.1859271.

N. Khairunnisa et al., “Physicochemical Properties of Sago Bark Biochar and Its Potential As Plant Growth Media (Sifat Fizikokimia Bio-Arang Sisa Kulit Sagu dan Potensinya Sebagai Media Pertumbuhan Tanaman),†Malaysian J. Anal. Sci., vol. 25, no. 4, pp. 622–636, 2021.

A. A. Rahi et al., “Toxicity of Cadmium and nickel in the context of applied activated carbon biochar for improvement in soil fertility,†Saudi J. Biol. Sci., vol. 29, no. 2, pp. 743–750, 2022, doi: 10.1016/j.sjbs.2021.09.035.

J. Rambli, W. A. Wan Abd Karim Ghani, and M. A. Mohd Salleh, “Characterization of Sago-based Biochar as Potential Feedstock for Solid Fuel,†J. Energy Saf. Technol., vol. 1, no. 2, pp. 11–17, 2018, doi: 10.11113/jest.v1n2.16.

C. Kang, Y. Huang, H. Yang, X. F. Yan, and Z. P. Chen, “A review of carbon dots produced from biomass wastes,†Nanomaterials, vol. 10, no. 11, pp. 1–24, 2020, doi: 10.3390/nano10112316.

O. Togibasa, M. Mumfaijah, Y. K. Allo, K. Dahlan, and Y. O. Ansanay, “The effect of chemical activating agent on the properties of activated carbon from sago waste,†Appl. Sci., vol. 11, no. 24, 2021, doi: 10.3390/app112411640.

Y. Istikorini, Nurhafifah, A. P. P. Hartoyo, A. Solikhin, and E. A. Octiaviani, “Effect of plant growth-promoting rhizobacteria and bionanomaterial membrane applications on chemical properties of peat soils,†IOP Conf. Ser. Earth Environ. Sci., vol. 959, no. 1, 2022, doi: 10.1088/1755-1315/959/1/012049.

B. Weerasuk, S. ang Supharoek, K. Grudpan, and K. Ponhong, “Exploiting crude betel nut (Areca catechu Linn.) extracted solution as a natural reagent with sequential injection spectrophotometry for iron analysis in rice samples,†J. Iran. Chem. Soc., vol. 19, no. 3, pp. 741–751, 2022, doi: 10.1007/s13738-021-02337-2.

T. M. Novera, M. Tabassum, M. Bardhan, M. A. Islam, and M. A. Islam, “Chemical modification of betel nut husk prepared by sodium hydroxide for methylene blue adsorption,†Appl. Water Sci., vol. 11, no. 4, pp. 1–14, 2021, doi: 10.1007/s13201-021-01394-5.

F. Rosalina, D. Tjahyandari, and D. Darmawan, “The Potential Of Nickel Slag with Humic Substance Addition as Ameliorating Materials on Gajrug Red-Yellow Podzolic,†Sains Tanah - J. Soil Sci. Agroclimatol., vol. 15, no. 1, p. 61, 2018, doi: 10.15608/stjssa.v15i1.17814.

H. Senghie, M. H. Bolhassan, and D. S. Awg-Adeni, “The Effects of Sago (Metroxylon sagu) Bark and Frond Waste as Substrates on the Growth and Yield of Grey Oyster Mushrooms (Pleurotus sajor-caju),†Pertanika J. Trop. Agric. Sci., vol. 44, no. 2, pp. 307–316, 2021, doi: 10.47836/PJTAS.44.2.04.

A. Nazir, Um-E-laila, Firdaus-E-bareen, E. Hameed, and M. Shafiq, “Sustainable management of peanut shell through biochar and its application as soil ameliorant,†Sustain., vol. 13, no. 24, 2021, doi: 10.3390/su132413796.

M. S. Kahar, F. Rosalina, I. Febriadi, and A. Fahrizal, “Effect of various extractors and time of shaking on soil reaction and micro element soil,†AIP Conf. Proc., vol. 2081, no. March 2019, doi: 10.1063/1.5094025.

P. D. Johan, O. H. Ahmed, A. Maru, L. Omar, and N. A. Hasbullah, “Optimisation of charcoal and sago (Metroxylon sagu) bark ash to improve phosphorus availability in acidic soils,†Agronomy, vol. 11, no. 9, pp. 1–28, 2021, doi: 10.3390/agronomy11091803.

Z. Liu et al., “Modified biochar: synthesis and mechanism for removal of environmental heavy metals,†Carbon Res., vol. 1, no. 1, pp. 1–21, 2022, doi: 10.1007/s44246-022-00007-3.

D. Firnia, S. Anwar, D. . Santosa, B. Nugroho, and D. P. . Baskoro, “Transformation of aluminium fractions and phosphorus availability in acid soils as the result of microbes and ameliorant addition,†J. Degrad. Min. L. Manag., vol. 7, no. 4, pp. 2355–2362, 2020, doi: 10.15243/jdmlm.

D. Lauricella et al., “Impact of novel materials on alkalinity movement down acid soil profiles when combined with lime,†J. Soils Sediments, vol. 21, no. 1, pp. 52–62, 2021, doi: 10.1007/s11368-020-02747-4.

S. W. Budi, C. Wibowo, A. Sukendro, and H. S. Bekti, “Growth improvement of falcataria moluccana inoculated with mycosilvi grown in post-mining silica sand soil medium amended with soil ameliorants,†Biodiversitas, vol. 21, no. 1, pp. 422–427, 2020, doi: 10.13057/biodiv/d210149.

P. Paramisparam, O. H. Ahmed, L. Omar, H. Y. Ch’ng, P. D. Johan, and N. H. Hamidi, “Co-application of charcoal and wood ash to improve potassium availability in tropical mineral acid soils,†Agronomy, vol. 11, no. 10, pp. 1–30, 2021, doi: 10.3390/agronomy11102081.

Y. Sun et al., “Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review,†Chem. Eng. J., vol. 424, no. April, 2021, doi: 10.1016/j.cej.2021.130387.

L. Han et al., “Biochar’s stability and effect on the content, composition and turnover of soil organic carbon,†Geoderma, vol. 364, no. January, pp. 1–11, 2020, doi: 10.1016/j.geoderma.2020.114184.

M. Satria, N. Harun, F. Hamzah, and A. Pramana, “Characteristics of charcoal briquettes corn cobs charcoal with the addition of areca peel charcoal,†J. Phys. Conf. Ser., vol. 2049, no. 1, 2021, doi: 10.1088/1742-6596/2049/1/012082.

Hasanuddin, H. Nurdin, Waskito, and D. Y. Sari, “Characteristic of Areca Fiber Briquettes as Alternative Energy,†J. Phys. Conf. Ser., vol. 1594, no. 1, 2020, doi: 10.1088/1742-6596/1594/1/012049.

N. H. Hamidi, O. H. Ahmed, L. Omar, and H. Y. Ch’ng, “Combined use of charcoal, sago bark ash, and urea mitigate soil acidity and aluminium toxicity,†Agronomy, vol. 11, no. 9, pp. 1–15, 2021, doi: 10.3390/agronomy11091799.

P. Paramisparam, O. H. Ahmed, L. Omar, H. Y. Ch’ng, A. Maru, and P. D. Johan, “Amending potassic fertilizer with charcoal and sago (Metroxylon sagu) bark ash to improve potassium availability in a tropical acid soil,†Agronomy, vol. 11, no. 11, pp. 1–31, 2021, doi: 10.3390/agronomy11112222.

P. D. Johan, O. H. Ahmed, L. Omar, and N. A. Hasbullah, “Charcoal and sago bark ash on ph buffering capacity and phosphorus leaching,†Agronomy, vol. 11, no. 11, pp. 1–20, 2021, doi: 10.3390/agronomy11112223.

J. Rambli, W. A. W. A. K. Ghani, M. A. M. Salleh, and R. Khezri, “Evaluation of biochar from Sago (Metroxylon Spp.) as a potential solid fuel,†BioResources, vol. 14, no. 1, pp. 1928–1940, 2019, doi: 10.15376/biores.14.1.1928-1940.

A. B. Syuhada, J. Shamshuddin, C. I. Fauziah, A. B. Rosenani, and A. Arifin, “Biochar as soil amendment: Impact on chemical properties and corn nutrient uptake in a Podzol,†Can. J. Soil Sci., vol. 96, no. 4, pp. 400–412, 2016, doi: 10.1139/cjss-2015-0044.

F. Zulfiqar et al., “Challenges in organic component selection and biochar as an opportunity in potting substrates: a review,†J. Plant Nutr., vol. 42, no. 11–12, pp. 1386–1401, 2019, doi: 10.1080/01904167.2019.1617310.

J. Rawat, J. Saxena, and P. Sanwal, “Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties,†in Biochar, V. Abrol, Ed. IntechOpen, 2019, pp. 1–17.

L. Zhang, Y. Xiang, Y. Jing, and R. Zhang, “Biochar amendment effects on the activities of soil carbon, nitrogen, and phosphorus hydrolytic enzymes: a meta-analysis,†Environ. Sci. Pollut. Res., vol. 26, no. 22, 2019, doi: 10.1007/s11356-019-05604-1.

P. Madhavi, V. Sailaja, T. R. Prakash, and S. . Hussain, “Characterization of Biochar and Humic Acid and their Effect on Soil Properties in Maize,†Int. J. Curr. Microbiol. Appl. Sci., vol. 6, no. 9, pp. 449–457, 2017, doi: 10.20546/ijcmas.2017.609.054.

N. Bohari et al., “Nutritional characteristics of biochar from pineapple leaf residue and sago waste,†Pertanika J. Sci. Technol., vol. 28, no. Special issue 2, pp. 273–286, 2020, doi: 10.47836/pjst.28.S2.21.

Y. P. Situmeang, I. D. N. Sudita, and M. Suarta, “Application of Compost and Biochar from Cow, Goat, and Chicken Manure to Restore Soil Fertility and Yield of Red Chili,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 5, pp. 2008–2015, 2021, doi: 10.18517/IJASEIT.11.5.13845.

F. Rosalina, M. A. A. Gafur, I. Irnawati, M. H. Soekamto, Z. Sangadji, and S. M. Kahar, “Utilization of Compost and Zeolite as Ameliorant on Quartz Sand Planting Media for Caisim (Brassica Juncea) Plant Growth,†J. Phys. Conf. Ser., vol. 1155, no. 1, 2019, doi: 10.1088/1742-6596/1155/1/012055.

K. Jindo et al., “Role of biochar in promoting circular economy in the agriculture sector. Part 2: A review of the biochar roles in growing media, composting and as soil amendment,†Chem. Biol. Technol. Agric., vol. 7, no. 1, pp. 1–10, 2020, doi: 10.1186/s40538-020-00179-3.

M. R. Nemati, F. Simard, J.-P. Fortin, and J. Beaudoin, “Potential Use of Biochar in Growing Media,†Vadose Zo. J., vol. 14, no. 6, p. vzj2014.06.0074, 2015, doi: 10.2136/vzj2014.06.0074.

Sugiyarto, A. Salim, and R. Firgiyanto, “The effect of the use of various kinds of biochar and soil nutrients on pakcoy (brassica rapa l.),†IOP Conf. Ser. Earth Environ. Sci., vol. 672, no. 1, 2021, doi: 10.1088/1755-1315/672/1/012014.

S. E. Hale et al., “The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics,†Sci. Total Environ., vol. 719, p. 137455, 2020, doi: 10.1016/j.scitotenv.2020.137455.

DOI: http://dx.doi.org/10.18517/ijaseit.13.3.18315


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development