Effect of Borax on Very High Calcium Geopolymer Concrete

Trio Pahlawan, Johannes Tarigan, Januarti Jaya Ekaputri, Amrinsyah Nasution

Abstract


This study examined the effect of borax pentahydrate on alkali-activated very high-calcium fly ash (VHCF)-based geopolymer concrete. The VHCF obtained from the Pangkalan Susu power plant, Langkat, North Sumatra Indonesia had 25% CaO and was classified as C-class fly ash according to the new ASTM C618-19. It was activated using an alkali solution produced using Na2SiO3 and NaOH at a ratio of 1.5. Moreover, borax pentahydrate was used due to its high-calcium content, and the setting time, compressive strength, split tensile strength, and flexural strength were investigated. It was discovered from the results that the geopolymer paste had a flash final setting time. The findings showed that the initial setting time was 5 minutes while the final was 25 minutes. The addition of 12% borax pentahydrate was observed to have prolonged the setting time from 25 minutes to 80 minutes. Furthermore, the compressive strength of the concrete after 28 days was 50 MPa using NaOH 8 M and 2% borax pentahydrate while the split tensile strength was 4.7 MPa and the flexural strength was 4.53 MPa. This implies the borax pentahydrate is capable of acting as a retarder to prolong the setting time but has the ability to reduce the compressive, flexural, and split tensile strengths.

Keywords


Very high-calcium fly ash; borax pentahydrate; retarder; geopolymer

Full Text:

PDF

References


L. K. Turner land F. lG. lCollins, l“Carbon ldioxide lequivalent l(CO2-e) lemissions: lA lcomparison lbetween lgeopolymer land lOPC lcement lconcrete,†lConstr. lBuild. lMater., lvol. l43, lpp. l125–130, l2013, ldoi: l10.1016/j.conbuildmat.2013.01.023.

J. lDavidovits, lGeopolymer lChemistry land lApplications. l5-th ledition, lno. l5. lSaint-Quentin: lInstitut lGéopolymère, l2020.

S. lM. lA. lQaidi let lal., l“Ultra-high-performance lgeopolymer lconcrete: lA lreview,†lConstr. lBuild. lMater., lvol. l346, lno. lSeptember, lpp. l11–13, l2022, ldoi: l10.1016/j.conbuildmat.2022.128495.

N. lNikoloutsopoulos, lA. lSotiropoulou, lG. lKakali, land lS. lTsivilis, l“Physical land lMechanical lProperties lof lFly lAsh lBased lGeopolymer lConcrete lCompared lto lConventional lConcrete,†lBuildings, lvol. l11, lno. l5, lp. l178, l2021.

K. lRashid, lX. lLi, lY. lXie, lJ. lDeng, land lF. lZhang, l“Cracking lbehavior lof lgeopolymer lconcrete lbeams lreinforced lwith lsteel land lfiber lreinforced lpolymer lbars lunder lflexural lload,†lCompos. lPart lB, lvol. l186, lno. lDecember l2019, lp. l107777, l2020, ldoi: l10.1016/j.compositesb.2020.107777.

M. lS. lDarmawan, lR. lBayuaji, lH. lSugihardjo, lN. lA. lHusin, land lR. lB. lAnugraha lAffandhie, l“Shear lStrength lof lGeopolymer lConcrete lBeams lUsing lHigh lCalcium lContent lFly lAsh lin la lMarine lEnvironment,†lBuildings, lvol. l9, lno. l4, lp. l98, lApr. l2019, ldoi: l10.3390/buildings9040098.

P. lSaranya, lP. lNagarajan, land lA. lP. lShashikala, l“Seismic lperformance lof lgeopolymer lconcrete lbeam-column ljoints lunder lreverse lcyclic lloading,†lInnov. lInfrastruct. lSolut., lvol. l6, lno. l2, l2021, ldoi: l10.1007/s41062-021-00474-4.

C. lK. lMa, lA. lZ. lAwang, land lW. lOmar, l“Structural land lmaterial lperformance lof lgeopolymer lconcrete: lA lreview,†lConstr. lBuild. lMater., lvol. l186, lpp. l90–102, l2018, ldoi: l10.1016/j.conbuildmat.2018.07.111.

A. lHassan, lM. lArif, land lM. lShariq, l“Use lof lgeopolymer lconcrete lfor la lcleaner land lsustainable lenvironment l– lA lreview lof lmechanical lproperties land lmicrostructure,†lJ. lClean. lProd., lvol. l223, lpp. l704–728, l2019, ldoi: l10.1016/j.jclepro.2019.03.051.

M. lAmran let lal., l“Long-term ldurability lproperties lof lgeopolymer lconcrete: lAn lin-depth lreview,†lCase lStud. lConstr. lMater., lvol. l15, lno. lJuly, lp. le00661, l2021, ldoi: l10.1016/j.cscm.2021.e00661.

T. lA. lLe, lT. lN. lNguyen, land lK. lT. lNguyen, l“Experimental, lNumerical, land lTheoretical lStudies lof lBond lBehavior lof lReinforced lFly lAsh-Based lGeopolymer lConcrete,†lAppl. lSci., lvol. l12, lno. l15, l2022, ldoi: l10.3390/app12157812.

M. lF. lA. lAbdul lSani land lR. lMuhamad, l“Bond lbehaviour lof lgeopolymer lconcrete lin lstructural lapplication: lA lreview,†lin lIOP lConference lSeries: lEarth land lEnvironmental lScience, l2020, lvol. l476, lno. l1, ldoi: l10.1088/1755-1315/476/1/012017.

R. lNurwidayati, lJ. lJ. lEkaputri, lTriwulan, land lP. lSuprobo, l“Effect lof lembedment llength lon lbond lstrength lof lgeopolymer lconcrete,†lin lAIP lConference lProceedings, l2020, lvol. l2291, lno. lNovember, ldoi: l10.1063/5.0022838.

J. lS. lJ. lVan lDeventer, lJ. lL. lProvis, land lP. lDuxson, l“Technical land lcommercial lprogress lin lthe ladoption lof lgeopolymer lcement,†lMiner. lEng., lvol. l29, lpp. l89–104, l2012, ldoi: l10.1016/j.mineng.2011.09.009.

N. lLi, lC. lShi, lZ. lZhang, lH. lWang, land lY. lLiu, l“A lreview lon lmixture ldesign lmethods lfor lgeopolymer lconcrete,†lCompos. lPart lB lEng., lvol. l178, lno. lSeptember, lp. l107490, l2019, ldoi: l10.1016/j.compositesb.2019.107490.

P. lPavithra, lM. lSrinivasula lReddy, lP. lDinakar, lB. lHanumantha lRao, lB. lK. lSatpathy, land lA. lN. lMohanty, l“A lmix ldesign lprocedure lfor lgeopolymer lconcrete lwith lfly lash,†lJ. lClean. lProd., lvol. l133, lno. lMay, lpp. l117–125, l2016, ldoi: l10.1016/j.jclepro.2016.05.041.

F. lF. lAtaie, l“Influence lof lcementitious lsystem lcomposition lon lthe lretarding leffects lof lborax land lzinc loxide,†lMaterials l(Basel)., lvol. l12, lno. l15, lpp. l1–13, l2019, ldoi: l10.3390/ma12152340.

A. lAntoni, lA. lA. lT. lPurwantoro, lW. lS. lP. lD. lSuyanto, land lD. lHardjito, l“Fresh land lHardened lProperties lof lHigh lCalcium lFly lAsh-Based lGeopolymer lMatrix lwith lHigh lDosage lof lBorax,†lIran. lJ. lSci. lTechnol. l- lTrans. lCiv. lEng., lvol. l44, lpp. l535–543, l2020, ldoi: l10.1007/s40996-019-00330-7.

P. lNuaklong, lK. lJanprasit, land lP. lJongvivatsakul, l“Enhancement lof lstrengths lof lhigh-calcium lfly lash lgeopolymer lcontaining lborax lwith lrice lhusk lash,†lJ. lBuild. lEng., lvol. l40, lno. lMay, lp. l102762, l2021, ldoi: l10.1016/j.jobe.2021.102762.

F. lA. lShilar, lS. lV. lGanachari, lV. lB. lPatil, lT. lM. lY. lKhan, land lS. lDawood lAbdul lKhadar, l“Molarity lactivity leffect lon lmechanical land lmicrostructure lproperties lof lgeopolymer lconcrete: lA lreview,†lCase lStud. lConstr. lMater., lvol. l16, lno. lMarch, lp. le01014, l2022, ldoi: l10.1016/j.cscm.2022.e01014.

J. lMa, lD. lWang, lS. lZhao, lP. lDuan, land lS. lYang, l“Influence lof lparticle lmorphology lof lground lfly lash lon lthe lfluidity land lstrength lof lcement lpaste,†lMaterials l(Basel)., lvol. l14, lno. l2, lpp. l1–18, l2021, ldoi: l10.3390/ma14020283.

Y. lCui, lJ. lLiu, lL. lWang, lR. lLiu, land lB. lPang, l“Effect lof lFly lAsh lwith lDifferent lParticle lSize lDistributions lon lthe lProperties land lMicrostructure lof lConcrete,†lJ. lMater. lEng. lPerform., lvol. l29, lno. l10, lpp. l6631–6639, l2020, ldoi: l10.1007/s11665-020-05108-x.

L. lXiong, lZ. lWan, lY. lZhang, lF. lWang, lJ. lWang, land lY. lKang, l“Fly lash lparticle lsize leffect lon lpore lstructure land lstrength lof lfly lash lfoamed lgeopolymer,†lAdv. lPolym. lTechnol., lvol. l2019, l2019, ldoi: l10.1155/2019/1098027.

P. lNuaklong, lA. lWongsa, lV. lSata, lK. lBoonserm, lJ. lSanjayan, land lP. lChindaprasirt, l“Properties lof lhigh-calcium land llow-calcium lfly lash lcombination lgeopolymer lmortar lcontaining lrecycled laggregate,†lHeliyon, lvol. l5, lno. l9, lp. le02513, l2019, ldoi: l10.1016/j.heliyon.2019.e02513.

X. lZhao, lC. lLiu, lL. lZuo, lL. lWang, lQ. lZhu, land lM. lWang, l“Investigation linto lthe leffect lof lcalcium lon lthe lexistence lform lof lgeopolymerized lgel lproduct lof lfly lash lbased lgeopolymers,†lCem. lConcr. lCompos., lvol. l103, lpp. l279–292, l2019, ldoi: l10.1016/j.cemconcomp.2018.11.019.

S. lH. lBong, lB. lNematollahi, lA. lNazari, lM. lXia, land lJ. lSanjayan, l“Efficiency lof ldifferent lsuperplasticizers land lretarders lon lproperties lof l‘one-part’ lfly lash-slag lblended lgeopolymers lwith ldifferent lactivators,†lMaterials l(Basel)., lvol. l12, lno. l20, l2019, ldoi: l10.3390/ma12203410.

G. lMathew land lB. lM. lIssac, l“Effect lof lmolarity lof lsodium lhydroxide lon lthe laluminosilicate lcontent lin llaterite laggregate lof llaterised lgeopolymer lconcrete,†lJ. lBuild. lEng., lvol. l32, lp. l101486, l2020, ldoi: l10.1016/j.jobe.2020.101486.

X. lGuo, lH. lShi, land lW. lA. lDick, l“Compressive lstrength land lmicrostructural lcharacteristics lof lclass lC lfly lash lgeopolymer,†lCem. lConcr. lCompos., lvol. l32, lno. l2, lpp. l142–147, l2010, ldoi: l10.1016/j.cemconcomp.2009.11.003.

R. lCornelis, lH. lPriyosulistyo, lI. lSatyarno, land lRochmadi, l“Workability land lStrength lProperties lof lClass lC lFly lAsh-Based lGeopolymer lMortar,†lin lMATEC lWeb lof lConferences, l2019, lvol. l258, lp. l01009, ldoi: l10.1051/matecconf/201925801009.

Kementerian lPekerjaan lUmum ldan lperumahan lRakyat, l“Spesifikasi lUmum l2018 luntuk lPekerjaan lKonstruksi lJalan ldan lJembatan,†lKementerian lPUPR lBina lMarga, lno. l02/SE/Db/2018. lJakarta lSelatan, l2018.




DOI: http://dx.doi.org/10.18517/ijaseit.13.4.18291

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development