Experimental Analysis of Water-1MHz-gasified with O2, and Simulation Analysis of Physicals Parameters Effect of Solvents in Megasonic Cleaning

Taha Yassine Rhabi, Mohamed Taha, Dris Ben Hmamou, Elhanafi Arjdal

Abstract


Aqueous chemicals and solvents are used heavily in semiconductor manufacturing, and device manufacturers are focused on advancing these cleaning liquids to the next technology node. The scientific results confirm that ultrasonic agitation can improve the removal of particles. Megasonic energy has been proven to improve particle elimination in semiconductor devices in cleaning procedures. On the other hand, applied ultrasonic energy may damage the sensible devices in the cleaning process. In order to better comprehend, we explore in this paper the impact of different liquid properties by showing the transient cavitation threshold by performing some simulations with the analytical Blake model and the numerical Gilmore model. The experimental setup firstly to understand the temporal and spectral response of the increasing of the electrical power, and secondly to investigate that increasing the gas level in the cleaning bath in Water-1MHz-gasified with O_2 modifies the acoustical pressure in the medium. We can conclude that the experimental measurements and simulation studies of the applicable sound wave field and cavitation level provide an important indication of the medium's properties. By proceeding in this manner, we can find the impact parameters on the onset of transient cavitation and the safe area to treat client wafers. At this point, we can figure out the cavitation threshold that works for us and safely translate it from one chemical process to another.

Keywords


Threshold cavitation; megasonic; signal processing; solvents; bubbles dynamics

Full Text:

PDF

References


R. Taha Yassine and E. hanafi Arjdal, “Monitoring of cavitation threshold under megasonic agitation,†Mater. Today Proc., vol. 52, pp. 180–186, 2022, doi: 10.1016/j.matpr.2021.12.019.

K. Zhai, L. Du, S. Wang, Y. Wen, and J. Liu, “Research on the synergistic effect of megasonic and particles in through mask electrochemical etching process,†Electrochim. Acta, vol. 364, p. 137300, 2020, doi: 10.1016/j.electacta.2020.137300.

R. Ji, M. Virot, R. Pflieger, and S. I. Nikitenko, “Sonochemical decontamination of magnesium and magnesium-zirconium alloys in mild conditions,†J. Hazard. Mater., vol. 406, no. November 2020, p. 124734, 2021, doi: 10.1016/j.jhazmat.2020.124734.

S. B.Awad and N. F.Awad, Surfactants in Precision Cleaning Removal of Contaminants At the Micro and Nanoscale Chapter 6 - The Role of Surfactants in Ultrasonic Cleaning: Nanoparticle Removal and Other Challenging Applications. 2021.

B. N. Sahoo et al., “Chemically controlled megasonic cleaning of patterned structures using solutions with dissolved gas and surfactant,†Ultrason. Sonochem., vol. 82, p. 105859, 2022, doi: 10.1016/j.ultsonch.2021.105859.

M. S. Kim, M. Purushothaman, H. T. Kim, H. J. Song, and J. G. Park, “Adhesion and removal behavior of particulate contaminants from EUV mask materials,†Colloids Surfaces A Physicochem. Eng. Asp., vol. 535, no. September, pp. 83–88, 2017, doi: 10.1016/j.colsurfa.2017.09.027.

C. Cairós, J. González-Sálamo, and J. Hernández-Borges, “The current binomial Sonochemistry-Analytical Chemistry,†J. Chromatogr. A, vol. 1614, 2020, doi: 10.1016/j.chroma.2019.460511.

C. L. Chu, T. Y. Lu, and Y. K. Fuh, “The suitability of ultrasonic and megasonic cleaning of nanoscale patterns in ammonia hydroxide solutions for particle removal and feature damage,†Semicond. Sci. Technol., vol. 35, no. 4, 2020, doi: 10.1088/1361-6641/ab675d.

G. W. Gale and A. A. Busnaina, “Removal of particulate contaminants using ultrasonics and megasonics: A review,†Part. Sci. Technol., vol. 13, no. 3–4, pp. 197–211, 1995, doi: 10.1080/02726359508906678.

C. K. Chang, T. H. Foo, M. Murkherjee-Roy, V. N. Bliznetov, and H. Y. Li, “Enhancing the efficiency of postetch polymer removal using megasonic wet clean for 0.13-μm dual damascene interconnect process,†Thin Solid Films, vol. 462–463, no. SPEC. ISS., pp. 292–296, 2004, doi: 10.1016/j.tsf.2004.05.059.

K. Ando, M. Sugawara, R. Sakota, T. Ishibashi, H. Matsuo, and K. Watanabe, “Particle removal in ultrasonic water flow cleaning: Role of cavitation bubbles as cleaning agents,†Solid State Phenom., vol. 314 SSP, pp. 218–221, 2021, doi: 10.4028/www.scientific.net/SSP.314.218.

M. Keswani, S. Raghavan, and P. Deymier, “A novel way of detecting transient cavitation near a solid surface during megasonic cleaning using electrochemical impedance spectroscopy,†Microelectron. Eng., vol. 108, pp. 11–15, 2013, doi: 10.1016/j.mee.2013.02.097.

P. Karimi, T. Kim, J. Aceros, J. Park, and A. A. Busnaina, “The removal of nanoparticles from sub-micron trenches using megasonics,†Microelectron. Eng., vol. 87, no. 9, pp. 1665–1668, 2010, doi: 10.1016/j.mee.2009.11.052.

N. V Franklin C, Fan Y, Brause E, “Using Megasonics to Extend Chemical Cleans for 45nm Technology,†Angew. Chemie Int. Ed. 6(11), 951–952., vol. 13, no. April, pp. 15–38, 2013, doi: 10.1149/1.2779369.

M. Lo, J. Tsao, and S. Lin, “Using the correlation property of subharmonic response as an index of cavitation of microbubbles,†IEEE Ultrason. Symp., vol. 00, no. c, pp. 1383–1386, 2004, doi: 10.1109/ULTSYM.2004.1418055.

Y. Katano and K. Ando, “Interaction between free-surface oscillation and bubble translation in a megasonic cleaning bath,†Solid State Phenom., vol. 314 SSP, pp. 202–206, 2021, doi: 10.4028/www.scientific.net/SSP.314.202.

J. P. Franc, The rayleigh-plesset equation: A simple and powerful tool to understand various aspects of cavitation, vol. 496. 2007.

M. Khavari, A. Priyadarshi, A. Hurrell, K. Pericleous, D. Eskin, and I. Tzanakis, “Characterization of shock waves in power ultrasound,†J. Fluid Mech., vol. 915, 2021, doi: 10.1017/jfm.2021.186.

H. Usui, T. Ishibashi, H. Matsuo, K. Watanabe, and K. Ando, “Visualization of acoustic waves and cavitation in ultrasonic water flow,†Solid State Phenom., vol. 314 SSP, pp. 186–191, 2021, doi: 10.4028/www.scientific.net/SSP.314.186.

K. Hashiba, K. I. Kawabata, and S. I. Umemura, “Specific impedance of liquids during ultrasonic cavitation,†Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 40, no. 7, pp. 4726–4729, 2001, doi: 10.1143/jjap.40.4726.

X. Huang, H. Hu, S. Li, and A. M. Zhang, “Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field,†Ultrason. Sonochem., vol. 64, no. September 2019, p. 104969, 2020, doi: 10.1016/j.ultsonch.2020.104969.

J. P. Franc et al., “The Gilmore-NASG model to predict single-bubble cavitation in compressible liquids,†in Ultrasonics Sonochemistry, vol. 70, no. May 2020, Elsevier, 2021, p. 105307.

N. Ochiai and J. Ishimoto, “Numerical analysis of the effect of bubble distribution on multiple-bubble behavior,†Ultrason. Sonochem., vol. 61, no. October 2019, p. 104818, 2020, doi: 10.1016/j.ultsonch.2019.104818.

T. Kurz, U. Parlitz, and U. K. Eds, Oscillations, waves, and interactions. 2017.

A. V. Pandit, V. P. Sarvothaman, and V. V. Ranade, “Estimation of chemical and physical effects of cavitation by analysis of cavitating single bubble dynamics,†Ultrason. Sonochem., vol. 77, no. December 2020, p. 105677, 2021, doi: 10.1016/j.ultsonch.2021.105677.

T. Tanaka and K. Ando, “Simulation of rayleigh bubble growth near a no-slip rigid wall,†Solid State Phenom., vol. 314 SSP, pp. 192–196, 2021, doi: 10.4028/www.scientific.net/SSP.314.192.

X. Chen, Bayanheshig, Q. Jiao, X. Tan, and W. Wang, “Numerical simulation of ultrasonic enhancement by acoustic streaming and thermal effect on mass transfer through a new computation model,†Int. J. Heat Mass Transf., vol. 171, p. 121074, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121074.

K. Yasui, “Numerical simulations for sonochemistry,†Ultrason. Sonochem., vol. 78, p. 105728, 2021, doi: 10.1016/j.ultsonch.2021.105728.

I. E. Commission, “Measurement of cavitation noise in ultrasonic baths and ultrasonic reactors,†International Electrotechnical Commission, 2019.

P. Wu, X. Wang, W. Lin, and L. Bai, “Acoustic characterization of cavitation intensity: A review,†Ultrason. Sonochem., vol. 82, p. 105878, 2022, doi: 10.1016/j.ultsonch.2021.105878.

K. A. Saalbach, J. Twiefel, and J. Wallaschek, “Self-sensing cavitation detection in ultrasound-induced acoustic cavitation,†Ultrasonics, vol. 94, no. July 2017, pp. 401–410, 2019, doi: 10.1016/j.ultras.2018.06.016.

P. Wu, L. Bai, and W. Lin, “Ultrasonics - Sonochemistry On the de fi nition of cavitation intensity,†vol. 67, no. January, pp. 10–12, 2020.

B. K. Kang, M. S. Kim, and J. G. Park, “Effect of dissolved gases in water on acoustic cavitation and bubble growth rate in 0.83 MHz megasonic of interest to wafer cleaning,†Ultrason. Sonochem., vol. 21, no. 4, pp. 1496–1503, 2014, doi: 10.1016/j.ultsonch.2014.01.012.

J. Mondal et al., “Acoustic cavitation at low gas pressures in PZT-based ultrasonic systems,†Ultrason. Sonochem., vol. 73, 2021, doi: 10.1016/j.ultsonch.2021.105493.

B. N. S. and al SoYoung Han, Nagendra Prasad Yerribonia, “Effect of Surfactant in Gas Dissolved Cleaning Solutions on Acoustic Bubble Dynamics,†Solid State Phenom., vol. 314 SSP, pp. 197–201, 2021, doi: https://doi.org/10.4028/www.scientific.net/SSP.314.197.

T. Yamashita and K. Ando, “Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents,†Ultrason. Sonochem., vol. 52, no. November 2018, pp. 268–279, 2019, doi: 10.1016/j.ultsonch.2018.11.025.

Y. Asakura and K. Yasuda, “Frequency and power dependence of ultrasonic degassing,†Ultrason. Sonochem., vol. 82, no. October 2021, 2022, doi: 10.1016/j.ultsonch.2021.105890.

K. Kerboua et al., “How do dissolved gases affect the sonochemical process of hydrogen production? An overview of thermodynamic and mechanistic effects – On the ‘hot spot theory,’†Ultrason. Sonochem., vol. 72, 2021, doi: 10.1016/j.ultsonch.2020.105422.

A. Harkin, A. Nadim, and T. J. Kaper, “On acoustic cavitation of slightly subcritical bubbles,†Phys. Fluids, vol. 11, no. 2, pp. 274–287, 1999, doi: 10.1063/1.869878.

S. Kouzbour, B. Gourich, Y. Stiriba, C. Vial, F. Gros, and R. Soutudeh-Gharebagh, “Experimental analysis of the effects of liquid phase surface tension on the hydrodynamics and mass transfer in a square bubble column,†Int. J. Heat Mass Transf., vol. 170, p. 121009, 2021, doi: 10.1016/j.ijheatmasstransfer.2021.121009.

P. Kováts, D. Thévenin, and K. Zähringer, “Influence of viscosity and surface tension on bubble dynamics and mass transfer in a model bubble column,†Int. J. Multiph. Flow, vol. 123, 2020, doi: 10.1016/j.ijmultiphaseflow.2019.103174.

B. Huang, X. Nan, C. Fu, and T. Guo, “Study of the bubble collapse mechanism and its influencing factors on stability under ultra-low surface tension,†Colloids Surfaces A Physicochem. Eng. Asp., vol. 618, no. March, p. 126440, 2021, doi: 10.1016/j.colsurfa.2021.126440.

H. Wu, H. Zheng, Y. Li, C. D. Ohl, H. Yu, and D. Li, “Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field,†Ultrason. Sonochem., vol. 78, p. 105735, 2021, doi: 10.1016/j.ultsonch.2021.105735.

R. Park, M. Choi, E. H. Park, W. J. Shon, H. Y. Kim, and W. Kim, “Comparing cleaning effects of gas and vapor bubbles in ultrasonic fields,†Ultrason. Sonochem., vol. 76, p. 105618, 2021, doi: 10.1016/j.ultsonch.2021.105618.

T. G. Leighton, The Acoustic Bubble chapter 4 and 5. London, 1994.

N. S. M. Yusof, S. Anandan, P. Sivashanmugam, E. M. M. Flores, and M. Ashokkumar, “A correlation between cavitation bubble temperature, sonoluminescence and interfacial chemistry – A minireview,†Ultrason. Sonochem., vol. 85, no. March, p. 105988, 2022, doi: 10.1016/j.ultsonch.2022.105988.

D. P. R. Thanu et al., “Use of Surfactants in Acoustic Cleaning,†Surfactants Precis. Clean., pp. 193–226, Jan. 2022, doi: 10.1016/B978-0-12-822216-4.00002-1.

G. L. Lee and M. C. Law, “Numerical modelling of single-bubble acoustic cavitation in water at saturation temperature,†Chem. Eng. J., vol. 430, no. October 2021, 2022, doi: 10.1016/j.cej.2021.133051.

Q. Yu, X. Ma, Z. Xu, J. Zhao, D. Wang, and Z. Huang, “Thermodynamic effect of single bubble near a rigid wall,†Ultrason. Sonochem., vol. 71, no. July 2020, 2021, doi: 10.1016/j.ultsonch.2020.105396.

L. Mancia, M. Rodriguez, J. R. Sukovich, S. Haskel, Z. Xu, and E. Johnsen, “Acoustic Measurements of Nucleus Size Distribution at the Cavitation Threshold,†Ultrasound Med. Biol., vol. 47, no. 4, pp. 1024–1031, 2021, doi: 10.1016/j.ultrasmedbio.2020.12.007.

F. Hegedus, “Stable bubble oscillations beyond Blake’s critical threshold,†Ultrasonics, vol. 54, no. 4, pp. 1113–1121, 2014, doi: 10.1016/j.ultras.2014.01.006.




DOI: http://dx.doi.org/10.18517/ijaseit.13.4.17759

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development