Evaluating Retrofitting Strategies of Low-to-Mid-Rise Reinforced Concrete Structure Based on Its Seismic Fragility

Midia Rahma, Senot Sangadji, Zikra Fauzan Virawan, Halwan Alfisa Saifullah, Rida Handiana Devi


In earthquake-prone regions such as Indonesia, this situation has drawn public attention and led to difficulties in implementing certain policies and decision-making. One of the challenging issues in seismic risk reduction is evaluating the efficacy of seismic retrofitting the existing low-to-mid reinforced concrete building. Therefore, this research evaluates the retrofitting of low-to-mid-rise reinforced concrete structures to evaluate the efficacy of the retrofitting strategy rationally using Fiber Reinforced Plastic (FRP), Buckling Restrained Braced Frame (BRBF), and shear wall strategies. Rusunawa at Cilacap, a mid-rise RC apartment for low-income people, was selected as a benchmark building to compare existing and retrofitted seismic fragility. Furthermore, a 3D computer model was developed to predict the seismic response of the structure using a nonlinear static (pushover) analysis. The pushover method produces a capacity curve, showing that the unreinforced structure has a maximum base shear value of 15.2x103 kN. While the reinforcement of low to medium rise reinforced concrete structures using the Fiber Reinforced Plastic strategy has a maximum base shear value of 15.3x103 kN, then reinforcement using the Buckling Restrained Braced Frame strategy with a maximum base shear value of 16.2x103 kN. The shear wall reinforcement has a value maximum base shear of 19.7x103 kN. The capacity curves as the analysis outputs were then converted into the fragility and used to rationalize the probabilistic value of the damage states between existing and retrofitted buildings.


Fragility; retrofitting; nonlinear static (pushover) analysis

Full Text:



V. Y. Palagala and V. Singhal, “Structural score to quantify the vulnerability for quick seismic assessment of RC framed buildings in India,†Eng. Struct., vol. 243, Sep. 2021, doi: 10.1016/J.ENGSTRUCT.2021.112659.

X. Liao, S. Zhang, Z. Cao, and X. Xiao, “Seismic performance of a new type of precast shear walls with non-connected vertical distributed reinforcement,†J. Build. Eng., vol. 44, p. 103219, Dec. 2021, doi: 10.1016/J.JOBE.2021.103219.

F. Rezazadeh and S. Talatahari, “Seismic energy-based design of BRB frames using multi-objective vibrating particles system optimization,†Structures, vol. 24, pp. 227–239, Apr. 2020, doi: 10.1016/J.ISTRUC.2020.01.006.

A. Rahimi and M. R. Maheri, “The effects of steel X-brace retrofitting of RC frames on the seismic performance of frames and their elements,†Eng. Struct., vol. 206, no. November 2019, 2020, doi: 10.1016/j.engstruct.2019.110149.

D. A. Pohoryles, J. Melo, T. Rossetto, H. Varum, and L. Bisby, “Seismic Retrofit Schemes with FRP for Deficient RC Beam-Column Joints: State-of-the-Art Review,†J. Compos. Constr., vol. 23, no. 4, p. 03119001, 2019, doi: 10.1061/(asce)cc.1943-5614.0000950.

H. H. Mhanna, R. A. Hawileh, and J. A. Abdalla, “Comparative analysis of design guidelines for FRP contribution to shear capacity of strengthened RC beams,†Procedia Struct. Integr., vol. 37, pp. 359–366, Jan. 2022, doi: 10.1016/J.PROSTR.2022.01.096.

M. Gotame, C. L. Franklin, M. Blomfors, J. Yang, and K. Lundgren, “Finite element analyses of FRP-strengthened concrete beams with corroded reinforcement,†Eng. Struct., vol. 257, p. 114007, Apr. 2022, doi: 10.1016/J.ENGSTRUCT.2022.114007.

S. E. Ruiz et al., “BRB retrofit of mid-rise soft-first-story RC moment-frame buildings with masonry infill in upper stories,†J. Build. Eng., vol. 38, p. 101783, 2021, doi: 10.1016/j.jobe.2020.101783.

J. A. Oviedo-Amezquita, N. Jaramillo-Santana, C. A. Blandon-Uribe, and A. M. Bernal-Zuluaga, “Development and validation of an acceptance criteria and damage index for buckling-restrained braces (BRB),†J. Build. Eng., vol. 43, Nov. 2021, doi: 10.1016/J.JOBE.2021.102534.

E. Ballinas, H. Guerrero, A. Terán-Gilmore, and J. Alberto Escobar, “Seismic response comparison of an existing hospital structure rehabilitated with BRBs or conventional braces,†Eng. Struct., vol. 243, Sep. 2021, doi: 10.1016/J.ENGSTRUCT.2021.112666.

A. Seifiasl and M. Hoseinzadeh Asl, “Experimental and numerical study on the seismic behavior of steel plate shear wall with reduced web section beams,†J. Build. Eng., vol. 46, p. 103797, Apr. 2022, doi: 10.1016/J.JOBE.2021.103797.

F. Wei, H. Chen, and Y. Xie, “Experimental study on seismic behavior of reinforced concrete shear walls with low shear span ratio,†J. Build. Eng., vol. 45, p. 103602, Jan. 2022, doi: 10.1016/J.JOBE.2021.103602.

A. M. Abualreesh, A. Tuken, A. Albidah, and N. A. Siddiqui, “Reliability-based optimization of shear walls in RC shear wall-frame buildings subjected to earthquake loading,†Case Stud. Constr. Mater., vol. 16, p. e00978, Jun. 2022, doi: 10.1016/J.CSCM.2022.E00978.

J. Zhong, J. Zhang, X. Zhi, and F. Fan, “Probabilistic seismic demand and capacity models and fragility curves for reticulated structures under far-field ground motions,†Thin-Walled Struct., vol. 137, pp. 436–447, Apr. 2019, doi: 10.1016/j.tws.2019.01.032.

Y. Peng, Y. Ma, T. Huang, and D. De Domenico, “Reliability-based design optimization of adaptive sliding base isolation system for improving seismic performance of structures,†Reliab. Eng. Syst. Saf., vol. 205, p. 107167, 2021, doi: 10.1016/j.ress.2020.107167.

Y. S. Lin, R. W. K. Chan, and H. Tagawa, “Earthquake early warning-enabled smart base isolation system,†Autom. Constr., vol. 115, no. December 2019, p. 103203, 2020, doi: 10.1016/j.autcon.2020.103203.

F. F. Taucer, E. Spacone, and F. C. Filippou, “A Fiber Beam-Column Element for Seismic Response Analysis of Reinforced Concrete Structures,†Ucb/Eerc-91/17, no. December 1991, p. 138, 1991.

B. Ferracuti, M. Savoia, R. Francia, R. Pinho, and S. Antoniou, “Pushover analysis of FRP-retrofitted existing RC frame structures,†FRPRCS-8 Univ. Patras, Patras, no. June 2014, pp. 1–10, 2007.

R. Pinho, C. Casarotti, and S. Antoniou, “A comparison of single-run pushover analysis techniques for seismic assessment of bridges,†Earthq. Eng. Struct. Dyn., vol. 36, no. 10, pp. 1347–1362, 2007, doi: 10.1002/EQE.684.

M. R. Spoelstra and G. Monti, “FRP-Confined Concrete Model,†J. Compos. Constr., vol. 3, no. 3, pp. 143–150, Aug. 1999, doi: 10.1061/(ASCE)1090-0268(1999)3:3(143).

R. H. Devi, S. Sangadji, and H. A. Saifullah, “Fragility curve of low-to-mid-rise concrete frame retrofitted with FRP,†E3S Web Conf., vol. 156, 2020, doi: 10.1051/e3sconf/202015603006.

A. Zona and A. D. Asta, “Elastoplastic model for steel buckling-restrained braces,†JCSR, vol. 68, no. 1, pp. 118–125, 2012, doi: 10.1016/j.jcsr.2011.07.017.

W. M. Hassan and J. C. Reyes, “Assessment of modal pushover analysis for mid-rise concrete buildings with and without viscous dampers,†J. Build. Eng., vol. 29, p. 101103, May 2020, doi: 10.1016/J.JOBE.2019.101103.

M. Kheirollahi, K. Abedi, and M. R. Chenaghlou, “A new pushover procedure for estimating seismic demand of double-layer barrel vault roof with vertical double-layer walls,†Structures, vol. 34, pp. 1507–1524, Dec. 2021, doi: 10.1016/J.ISTRUC.2021.08.090.

M. Gholhaki, G. Pachideh, and A. Javahertarash, “Capacity spectrum of SPSW using pushover and energy method without need for calculation of target point,†Structures, vol. 26, pp. 516–523, Aug. 2020, doi: 10.1016/J.ISTRUC.2020.04.028.

A. Nettis, R. Gentile, D. Raffaele, G. Uva, and C. Galasso, “Cloud Capacity Spectrum Method: Accounting for record-to-record variability in fragility analysis using nonlinear static procedures,†Soil Dyn. Earthq. Eng., vol. 150, p. 106829, Nov. 2021, doi: 10.1016/J.SOILDYN.2021.106829.

Y. Liu, J. S. Kuang, Q. Huang, Z. Gu, and X. Wang, “Spectrum-based pushover analysis for the quick seismic demand estimation of reinforced concrete shear walls,†Structures, vol. 27, no. June, pp. 1490–1500, 2020, doi: 10.1016/j.istruc.2020.07.040.

J. Zhong, J. Zhang, X. Zhi, and F. Fan, “Thin-Walled Structures Probabilistic seismic demand and capacity models and fragility curves for reticulated structures under far- fi eld ground motions,†Thin Walled Struct., vol. 137, no. January, pp. 436–447, 2019, doi: 10.1016/j.tws.2019.01.032.

G. Andreotti and C. G. Lai, “Use of fragility curves to assess the seismic vulnerability in the risk analysis of mountain tunnels,†Tunn. Undergr. Sp. Technol., vol. 91, p. 103008, Sep. 2019, doi: 10.1016/J.TUST.2019.103008.

M. Bovo and N. Buratti, “Evaluation of the variability contribution due to epistemic uncertainty on constitutive models in the definition of fragility curves of RC frames,†Eng. Struct., vol. 188, pp. 700–716, Jun. 2019, doi: 10.1016/J.ENGSTRUCT.2019.03.064.

I. Ratna Hapsari, S. Sangadji, and S. Adi Kristiawan, “Seismic performance of four-storey masonry infilled reinforced concrete frame building,†MATEC Web Conf., vol. 195, pp. 1–14, 2018, doi: 10.1051/matecconf/201819502017.

Z. F. Virawan, S. Sangadji, and H. A. Saifullah, “Fragility curves for low-to-mid-rise concrete frame building retrofitted by shear wall-frame system,†IOP Conf. Ser. Earth Environ. Sci., vol. 871, no. 1, pp. 0–8, 2021, doi: 10.1088/1755-1315/871/1/012011.

V. Silva, H. Crowley, H. Varum, R. Pinho, and R. Sousa, “Evaluation of analytical methodologies used to derive vulnerability functions,†Earthq. Eng. Struct. Dyn., vol. 43, no. 2, pp. 181–204, 2014, doi: 10.1002/EQE.2337.

DOI: http://dx.doi.org/10.18517/ijaseit.13.2.17480


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development