The Fermentation Time Effect against the Isoflavones Profiles of Genistein and Daidzein of Blacksoyghurt as a Potential Functional-Probiotic Drink

Aisyah Agis Rahmawati, Bhakti Etza Setiani, Yoyok Budi Pramono, Ahmad Ni'matullah Al-Baarri


Blacksoyghurt is a fermented black soybean juice drink as a vegan probiotic product as an option as a substitute for dairy products. Black soybean glucoside isoflavone compounds are converted into aglycone compounds during the fermentation process which is antioxidant compounds. This study aims to determine the effect of fermentation time on the isoflavone profile of genistein and daidzein blacksoyghurt, as well as panelists' preferences as potential functional drinks. Blacksoyghurt was fermented with 5% lactic acid bacteria starter at 37°C for 0 hours, 3 hours, 6 hours, 9 hours, and 12 hours. The results of isoflavone, genistein, and daidzein profiles were analyzed by descriptive analysis using Microsoft Excel 19 for windows. LAB viability analysis was analyzed using one-way ANOVA followed by Duncan's analysis to determine whether there was a significant difference in treatment at the p<0.05 confidence interval. The hedonic test data were analyzed using the Kruskal Wallis test with a significance level (p<0.05), followed by the Mann-Whitney test. The longer blacksoyghurt fermentation time resulted in an increase in antioxidant levels of IC50 (1385.18 - 760.79), isoflavone profile (37.50 μg/g - 313.64 μg/g), and lactic acid bacteria (0 CFU/mL - 2.04 x 1010 CFU/mL), and decreased levels of genistein (28.22 μg/g - 22.97 μg/g) and daidzein (32.66 μg/g - 25.49 μg/g). Panelists prefer blacksoyghurt which has a sour taste, a distinctive yogurt aroma, and a thick texture. The best-recommended fermentation time is 12 hours for the isoflavone, genistein, and daidzein content, as well as the panelists' high preference.


Antioxidant; blacksoyghurt; daidzein; genistein; hedonic; isoflavone

Full Text:



C. I. Le Roy et al., ‘Yoghurt consumption is associated with changes in the composition of the human gut microbiome and metabolome’, BMC Microbiol., vol. 22, no. 1, pp. 1–12, 2022, doi: 10.1186/s12866-021-02364-2.

A. Khosravi and S. H. Razavi, ‘Therapeutic effects of polyphenols in fermented soybean and black soybean products’, J. Funct. Foods, vol. 81, no. January, p. 104467, 2021, doi: 10.1016/j.jff.2021.104467.

J. G. C. Angeles et al., ‘Legumes as functional food for cardiovascular disease’, Appl. Sci., vol. 11, no. 12, pp. 1–39, 2021, doi: 10.3390/app11125475.

M. D. Harjiyanti, Y. B. Pramono, and S. Mulyani, ‘Total asam, viskositas, dan kesukaan pada yoghurt drink dengan sari buah mangga (Magnifera indica) sebagai perisa alami’, J. Apl. Teknol. Pangan, vol. 2, no. 2, pp. 104–107, 2013.

A. M. Elshafei, A. M. Othman, M. A. Elsayed, G. E. Ibrahim, M. M. Hassan, and N. S. Mehanna, ‘A statistical strategy for optimizing the production of α-galactosidase by a newly isolated Aspergillus niger NRC114 and assessing its efficacy in improving soymilk properties’, J. Genet. Eng. Biotechnol., vol. 20, no. 1, 2022, doi: 10.1186/s43141-022-00315-6.

A. Bettaiah and H. B. Prabhushankar, ‘Screening of Novel Source for Genistein by Rapid and Sensitive UPLC-APCI-TOF Mass Spectrometry’, Int. J. Food Sci., vol. 2021, 2021, doi: 10.1155/2021/5537917.

A. Mangalisu, A. K. Armayanti, and Z. Wulandari, ‘Antimicrobial Activity of Lactobacillus plantarum in Fermented Chicken Egg towards Pathogenic Bacteria’, IOP Conf. Ser. Earth Environ. Sci., vol. 1020, no. 1, p. 012023, 2022, doi: 10.1088/1755-1315/1020/1/012023.

A. G. Toledo et al., ‘Antimicrobial, antioxidant activity and phytochemical prospection of Eugenia involucrata DC. Leaf extracts’, Brazilian J. Biol., vol. 83, pp. 1–9, 2023, doi: 10.1590/1519-6984.245753.

D. Fadly, W. U. Sutarno, Y. S. Muttalib, M. Muhajir, and F. F. Mujahidah, ‘Plant-based milk Developed from Soy (Glycine max) Milk and Foxtail Millet (Setaria italica)’, IOP Conf. Ser. Earth Environ. Sci., vol. 807, no. 2, 2021, doi: 10.1088/1755-1315/807/2/022063.

X. Chen, M. Yuan, Y. Wang, Y. Zhou, and X. Sun, ‘Influence of fermentation with different lactic acid bacteria and in vitro digestion on the change of phenolic compounds in fermented kiwifruit pulps’, Int. J. Food Sci. Technol., vol. 57, no. 5, pp. 2670–2679, 2022, doi: 10.1111/ijfs.15316.

P. Cichońska and M. Ziarno, ‘Legumes and legume-based beverages fermented with lactic acid bacteria as a potential carrier of probiotics and prebiotics’, Microorganisms, vol. 10, no. 1, 2022, doi: 10.3390/microorganisms10010091.

Y. Rokni et al., ‘Characterization of β-glucosidase of Lactobacillus plantarum FSO1 and Candida pelliculosa L18 isolated from traditional fermented green olive’, J. Genet. Eng. Biotechnol., vol. 19, no. 1, 2021, doi: 10.1186/s43141-021-00213-3.

M. Kieliszek, K. Pobiega, K. Piwowarek, and A. M. Kot, ‘Characteristics of the proteolytic enzymes produced by lactic acid bacteria’, Molecules, vol. 26, no. 7, pp. 1–15, 2021, doi: 10.3390/molecules26071858.

M. Akbarian, A. Khani, S. Eghbalpour, and V. N. Uversky, ‘Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action’, Int. J. Mol. Sci., vol. 23, no. 3, 2022, doi: 10.3390/ijms23031445.

E. R. Coscueta, D. A. Campos, H. Osório, B. B. Nerli, and M. Pintado, ‘Enzymatic soy protein hydrolysis: A tool for biofunctional food ingredient production’, Food Chem. X, vol. 1, no. February, p. 100006, 2019, doi: 10.1016/j.fochx.2019.100006.

Y. H. Fu and F. C. Zhang, ‘Changes in isoflavone glucoside and aglycone contents of chickpea yoghurt during fermentation by Lactobacillus bulgaricus and Streptococcus thermophilus’, J. Food Process. Preserv., vol. 37, no. 5, pp. 744–750, 2013, doi: 10.1111/j.1745-4549.2012.00713.x.

M. Mechmeche, F. Kachouri, H. Ksontini, and M. Hamdi, ‘Production of bioactive peptides from tomato seed isolate by Lactobacillus plantarum fermentation and enhancement of antioxidant activity’, Food Biotechnol., vol. 31, no. 2, pp. 94–113, 2017, doi: 10.1080/08905436.2017.1302888.

J. H. Lee, C. E. Hwang, E. J. Cho, Y. H. Song, S. C. Kim, and K. M. Cho, ‘Improvement of nutritional components and in vitro antioxidative properties of soy-powder yogurts using Lactobacillus plantarum’, J. Food Drug Anal., vol. 26, no. 3, pp. 1054–1065, 2018, doi: 10.1016/j.jfda.2017.12.003.

N. S. Lovabyta, J. Jayus, and A. S. Nugraha, ‘Bioconversion of isoflavones glycoside to aglycone during edamame (Glycine max) soygurt production using streptococcus thermophillus FNCC40, lactobacillus delbrueckii FNCC41, and L. plantarum FNCC26’, Biodiversitas, vol. 21, no. 4, pp. 1358–1364, 2020, doi: 10.13057/biodiv/d210412.

L. E. da S. Almeida, G. C. A. Ribeiro, and S. Aparecida de Assis, ‘β-Glucosidase produced by Moniliophthora perniciosa: Characterization and application in the hydrolysis of sugarcane bagasse’, Biotechnol. Appl. Biochem., no. April, pp. 1–11, 2021, doi: 10.1002/bab.2167.

H. J. Kim and M. J. Han, ‘The fermentation characteristics of soy yogurt with different content of d-allulose and sucrose fermented by lactic acid bacteria from Kimchi’, Food Sci. Biotechnol., vol. 28, no. 4, pp. 1155–1161, 2019, doi: 10.1007/s10068-019-00560-5.

M. Gupta et al., ‘Differences in hedonic responses, facial expressions and self-reported emotions of consumers using commercial yogurts: A cross-cultural study’, Foods, vol. 10, no. 6, 2021, doi: 10.3390/foods10061237.

R. H. B. Setiarto, N. Widhyastuti, and D. R. Kurnia, ‘Optimal concentration of prebiotic raffinose to increase viability of lactobacillus acidophilus, lactobacillus bulgaricus, streptococcus thermophilus’, Carpathian J. Food Sci. Technol., vol. 13, no. 3, pp. 147–157, 2021, doi: 10.34302/crpjfst/2021.13.3.12.

M. Barzavar and N. Rahimifard, ‘Evaluation of the antimicrobial activity of lactobacillus gasseri as probiotic bacteria against salmonella enterica sero type entertidis’, GMP Rev., vol. 16, no. 4, pp. 56–64, 2015.

F. Darikvand, M. Ghavami, and M. Honarvar, ‘Determination of the Phenolic Content in Iranian Trehala Manna and Evaluation of Their Antioxidant Effects’, Evidence-based Complement. Altern. Med., vol. 2021, 2021, doi: 10.1155/2021/8570162.

V. K. D. Krishnaswamy, P. Alugoju, and L. Periyasamy, Physiological effects of carotenoids on hyperglycemia and associated events, 1st ed., vol. 64. Elsevier Inc., 2020.

A. A. J. Mahmood, ‘Synthesis, antioxidant and antimicrobial activities for new 4,4’- methylenedianiline amide compounds’, Egypt. J. Chem., vol. 64, no. 12, pp. 6999–7005, 2021, doi: 10.21608/EJCHEM.2021.80123.3949.

A. A. Hamid, O. Aiyelaagbe, L. A. Usman, and M. Oloduowo Ameen, ‘Antioxidants: Its medicinal and pharmacological applications Composition and bioactivities of Essential Oils View project’, African J. Pure Appl., vol. 4, no. 8, pp. 142–151, 2010, [Online]. Available:

N. Khumkarjorn, S. Thanonkeo, M. Yamada, and P. Thanonkeo, ‘Cloning and expression analysis of a flavanone 3-hydroxylase gene in Ascocenda orchid’, J. Plant Biochem. Biotechnol., vol. 26, no. 2, pp. 179–190, 2017, doi: 10.1007/s13562-016-0379-1.

O. A. Adebo and I. G. Medina-Meza, ‘Impact of Fermentation on the Phenolic Compounds and Antioxidant Activity of Whole Cereal Grains ’:, Molecules, vol. 25, no. 927, pp. 1–19, 2020.

M. H. Han, H. J. Kim, J. W. Jeong, C. Park, B. W. Kim, and Y. H. Choi, ‘Inhibition of adipocyte differentiation by anthocyanins isolated from the fruit of Vitis coignetiae Pulliat is associated with the activation of AMPK signaling pathway’, Toxicol. Res., vol. 34, no. 1, pp. 13–21, 2018, doi: 10.5487/TR.2018.34.1.013.

T. Hui, Y. Zhang, M. A. Jamali, and Z. Peng, ‘Incorporation of pig back fat in restructured dry cured ham to enhance the lipase and lipoxygenase activities’, Eur. J. Lipid Sci. Technol., vol. 119, no. 2, pp. 1–7, 2017, doi: 10.1002/ejlt.201500581.

C. Acquah, G. Ohemeng-Boahen, K. A. Power, and S. M. Tosh, ‘The Effect of Processing on Bioactive Compounds and Nutritional Qualities of Pulses in Meeting the Sustainable Development Goal 2’, Front. Sustain. Food Syst., vol. 5, no. May, pp. 1–16, 2021, doi: 10.3389/fsufs.2021.681662.

M. M. Rahman et al., ‘Role of phenolic compounds in human disease: Current knowledge and future prospects’, Molecules, vol. 27, no. 1, pp. 1–36, 2022, doi: 10.3390/molecules27010233.

Y. Zhang et al., ‘Physiological responses of Arthrobacter sp. JQ-1 cell interfaces to co-existed di-(2-ethylhexyl) phthalate (DEHP) and copper’, Ecotoxicol. Environ. Saf., vol. 205, no. April, p. 111163, 2020, doi: 10.1016/j.ecoenv.2020.111163.

H. Li et al., ‘Lactic acid bacteria isolated from Kazakh traditional fermented milk products affect the fermentation characteristics and sensory qualities of yogurt’, Food Sci. Nutr., vol. 10, no. 5, pp. 1451–1460, 2022, doi: 10.1002/fsn3.2755.

K. Mikołajczyk-bator, ‘The significance of saponins in shaping the quality of food products from red beet’, Acta, vol. 21, no. 1, pp. 81–90, 2022.

W. T. Chitisankul, M. Murakami, C. Tsukamoto, and K. Shimada, ‘Effects of long-term soaking on nutraceutical and taste characteristic components in Thai soybeans’, Lwt, vol. 115, no. December 2018, p. 108432, 2019, doi: 10.1016/j.lwt.2019.108432.

A. Soyata, A. N. Hasanah, and T. Rusdiana, ‘Isoflavones in Soybean as a Daily Nutrient: The Mechanisms of Action and How They Alter the Pharmacokinetics of Drugs’, Turkish J. Pharm. Sci., vol. 18, no. 6, pp. 799–810, 2021, doi: 10.4274/tjps.galenos.2020.79106.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development