### Prediction of Drug Demand Based on Deep Learning Approach and Classification Model

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

R. A. Zayed, D. Omran, and A. A. Zayed, â€œCOVID-19 clinical and laboratory diagnosis overview,â€ J. Egypt. Public Health Assoc., vol. 96, no. 1, pp. 1â€“5, 2021.

M. Khan, M. T. Mehran, Z. U. Haq, Z. Ullah, and S. R. Naqvi, â€œApplications of artificial intelligence in COVID-19 pandemic: A comprehensive review,â€ Expert Syst. Appl., p. 115695, 2021.

V. Reinstadler et al., â€œMonitoring drug consumption in Innsbruck during coronavirus disease 2019 (COVID-19) lockdown by wastewater analysis,â€ Sci. Total Environ., vol. 757, p. 144006, 2021.

H. A. Badreldin and B. Atallah, â€œGlobal drug shortages due to COVID-19: impact on patient care and mitigation strategies,â€ Res. Soc. Adm. Pharm., vol. 17, no. 1, pp. 1946â€“1949, 2021.

E. A. Gehrie, S. M. Frank, and S. M. Goobie, â€œBalancing supply and demand for blood during the COVID-19 pandemic.â€ Lippincott Williams & Wilkins, 2020.

R. V. G. Peddapatla et al., â€œProcess Model Approach to Predict Tablet Weight Variability for Direct Compression Formulations at Pilot and Production Scale,â€ Pharmaceutics, vol. 13, no. 7, p. 1033, 2021.

Y. Ma and M. Gan, â€œDeepAssociate: A deep learning model exploring sequential influence and history-candidate association for sequence recommendation,â€ Expert Syst. Appl., vol. 185, p. 115587, 2021.

M. Gurnani, Y. Korke, P. Shah, S. Udmale, V. Sambhe, and S. Bhirud, â€œForecasting of sales by using fusion of machine learning techniques,â€ in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017, pp. 93â€“101.

A. R. B. Oglu and I. I. T. Kizi, â€œA method for forecasting the demand for pharmaceutical products in a distributed pharmacy network based on an integrated approach using fuzzy logic and neural networks,â€ in International Conference on Intelligent and Fuzzy Systems, 2020, pp. 998â€“1007.

S. Miller, A. El-Bahrawy, M. Dittus, M. Graham, and J. Wright, â€œPredicting Drug Demand with Wikipedia Views: Evidence from Darknet Markets.,â€ in Proceedings of the web conference 2020, 2020, pp. 2669â€“2675.

V. S. S. Somisetti and S. H. Palla, â€œEfficient Clustering of Water Distribution Network Using Affinity Propagation.,â€ IngÃ©nierie des SystÃ¨mes dâ€™Information, vol. 25, no. 4, 2020.

Y. W. Lee, J. W. Choi, and E.-H. Shin, â€œMachine learning model for diagnostic method prediction in parasitic disease using clinical information,â€ Expert Syst. Appl., p. 115658, 2021.

Y. Chang and T. Li, â€œPrediction Algorithm for Drugstore Consumption Members,â€ in 2021 IEEE 6th International Conference on Big Data Analytics (ICBDA), 2021, pp. 214â€“218.

A. Jozaghi et al., â€œMulti-model streamflow prediction using conditional bias-penalized multiple linear regression,â€ Stoch. Environ. Res. Risk Assess., pp. 1â€“19, 2021.

H. Wang, R. Czerminski, and A. C. Jamieson, â€œNeural networks and deep learning,â€ in The Machine Age of Customer Insight, Emerald Publishing Limited, 2021.

K. Abbas et al., â€œApplication of network link prediction in drug discovery,â€ BMC Bioinformatics, vol. 22, no. 1, pp. 1â€“21, 2021.

T. S. Kumar, â€œData mining based marketing decision support system using hybrid machine learning algorithm,â€ J. Artif. Intell., vol. 2, no. 03, pp. 185â€“193, 2020.

H. Wang, F. Yang, and S. Shen, â€œSupply Fraud Forecasting using Decision Tree Algorithm,â€ in 2021 IEEE International Conference on Consumer Electronics and Computer Engineering (ICCECE), 2021, pp. 344â€“347.

J. Y. Ryu, H. U. Kim, and S. Y. Lee, â€œDeep learning improves prediction of drugâ€“drug and drugâ€“food interactions,â€ Proc. Natl. Acad. Sci., vol. 115, no. 18, pp. E4304â€“E4311, 2018.

W. Deelder et al., â€œUsing deep learning to identify recent positive selection in malaria parasite sequence data,â€ Malar. J., vol. 20, no. 1, pp. 1â€“9, 2021.

A. Jha, G. Verma, Y. Khan, Q. Mehmood, D. Rebholz-Schuhmann, and R. Sahay, â€œDeep convolution neural network model to predict relapse in breast cancer,â€ in 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018, pp. 351â€“358.

Y. Pathak, P. K. Shukla, A. Tiwari, S. Stalin, and S. Singh, â€œDeep transfer learning based classification model for COVID-19 disease,â€ Irbm, 2020.

G. Chen and Z. Xu, â€œUsage of intelligent medical aided diagnosis system under the deep convolutional neural network in lumbar disc herniation,â€ Appl. Soft Comput., vol. 111, p. 107674, 2021.

T. A. Sipkens and S. N. Rogak, â€œUsing k-means to identify soot aggregates in transmission electron microscopy images,â€ J. Aerosol Sci., vol. 152, p. 105699, 2021.

M. S. Alam et al., â€œAutomatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm,â€ Big Data Cogn. Comput., vol. 3, no. 2, p. 27, 2019.

Y. Hozumi, R. Wang, C. Yin, and G.-W. Wei, â€œUMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets,â€ Comput. Biol. Med., vol. 131, p. 104264, 2021.

M. Yanto, S. Sanjaya, Yulasmi, D. Guswandi, and S. Arlis, â€œImplementation multiple linear regresion in neural network predict gold price.â€ Department of Informatics Engineering, Faculty of Computer Science, Universitas Putra Indonesia YPTK, Indonesia, 2021.

C. Zhou, â€œHouse price prediction using polynomial regression with Particle Swarm Optimization,â€ in Journal of Physics: Conference Series, 2021, vol. 1802, no. 3, p. 32034.

A. Rinaldi and Y. Devi, â€œMathematical modeling for awareness, knowledge, and perception that influence willpower to pay tax using multiple regression,â€ in Journal of Physics: Conference Series, 2021, vol. 1796, no. 1, p. 12062.

A. A. Pishro, S. Zhang, D. Huang, F. Xiong, W. Li, and Q. Yang, â€œApplication of artificial neural networks and multiple linear regression on local bond stress equation of UHPC and reinforcing steel bars,â€ Sci. Rep., vol. 11, no. 1, pp. 1â€“20, 2021.

B. W. Seok, K. Wee, J. Park, D. A. Kumar, and N. S. Reddy, â€œModeling the teacher job satisfaction by artificial neural networks,â€ Soft Comput., pp. 1â€“13, 2021.

J. GrÃ¶hl, M. Schellenberg, K. Dreher, and L. Maier-Hein, â€œDeep learning for biomedical photoacoustic imaging: A review,â€ Photoacoustics, p. 100241, 2021.

T. M. Shah, D. P. B. Nasika, and R. Otterpohl, â€œPlant and Weed Identifier Robot as an Agroecological Tool Using Artificial Neural Networks for Image Identification,â€ Agriculture, vol. 11, no. 3, p. 222, 2021.

M. Sharma, I. Kandasamy, and V. Kandasamy, â€œDeep Learning for predicting neutralities in Offensive Language Identification Dataset,â€ Expert Syst. Appl., p. 115458, 2021.

A. Nikolopoulos, C. Samlis, M. Zeneli, N. Nikolopoulos, S. Karellas, and P. Grammelis, â€œIntroducing an artificial neural network energy minimization multi-scale drag scheme for fluidized particles,â€ Chem. Eng. Sci., vol. 229, p. 116013, 2021.

K. Zaorska, P. Zawierucha, M. Åšwierczewska, D. Ostalska-Nowicka, J. Zachwieja, and M. Nowicki, â€œPrediction of steroid resistance and steroid dependence in nephrotic syndrome children,â€ J. Transl. Med., vol. 19, no. 1, pp. 1â€“13, 2021.

M. Rabiej and S. Rabiej, â€œApplication of the artificial neural network for identification of polymers based on their X-ray diffraction curves,â€ Comput. Mater. Sci., vol. 186, p. 110042, 2021.

M. A. Mojid and A. B. M. Z. Hossain, â€œComparative performance of multiple linear regression and artificial neural network models in estimating solute-transport parameters,â€ SAINS TANAH-Journal Soil Sci. Agroclimatol., vol. 18, no. 1, pp. 27â€“35.

G. Pappalardo, S. Cafiso, A. Di Graziano, and A. Severino, â€œDecision tree method to analyze the performance of lane support systems,â€ Sustainability, vol. 13, no. 2, p. 846, 2021.

Y. Lian, J. Chen, Z. Guan, and J. Song, â€œDevelopment of a monitoring system for grain loss of paddy rice based on a decision tree algorithm,â€ Int. J. Agric. Biol. Eng., vol. 14, no. 1, pp. 224â€“229, 2021.

P. Ducange, F. Marcelloni, and R. Pecori, â€œFuzzy hoeffding decision tree for data stream classification,â€ Int. J. Comput. Intell. Syst., vol. 14, no. 1, pp. 946â€“964, 2021.

V. Malik, Y. Kalakoti, and D. Sundar, â€œDeep learning assisted multi-omics integration for survival and drug-response prediction in breast cancer,â€ BMC Genomics, vol. 22, no. 1, pp. 1â€“11, 2021.

S. Arlis and S. Defit, â€œMachine Learning Algorithms for Predicting the Spread of Covidâ€’19 in Indonesia,â€ 2021.

S. L. Makali et al., â€œComparative analysis of the health status of the population in six health zones in South Kivu: a cross-sectional population study using the WHODAS,â€ Confl. Health, vol. 15, no. 1, pp. 1â€“11, 2021.

F. S. Neves, â€œCorrelation of the rise and fall in COVID-19 cases with the social isolation index and early outpatient treatment with hydroxychloroquine and chloroquine in the state of Santa Catarina, southern Brazil: A retrospective analysis,â€ Travel Med. Infect. Dis., vol. 41, p. 102005, 2021.

C. Xu, X. Chen, and L. Zhang, â€œPredicting river dissolved oxygen time series based on stand-alone models and hybrid wavelet-based models,â€ J. Environ. Manage., vol. 295, p. 113085, 2021.

S. Pokharel, P. Sah, and D. Ganta, â€œImproved Prediction of Total Energy Consumption and Feature Analysis in Electric Vehicles Using Machine Learning and Shapley Additive Explanations Method,â€ World Electr. Veh. J., vol. 12, no. 3, p. 94, 2021.

Z. Yu, S. Ye, Y. Sun, H. Zhao, and X.-Q. Feng, â€œDeep learning method for predicting the mechanical properties of aluminum alloys with small data sets,â€ Mater. Today Commun., p. 102570, 2021.

P. R. Srivastava, Z. J. Zhang, and P. Eachempati, â€œDeep Neural Network and Time Series Approach for Finance Systems: Predicting the Movement of the Indian Stock Market,â€ J. Organ. End User Comput., vol. 33, no. 5, pp. 204â€“226, 2021.

M. Mesgarpour et al., â€œPrediction of the spread of Corona-virus carrying droplets in a bus-A computational based artificial intelligence approach,â€ J. Hazard. Mater., vol. 413, p. 125358, 2021.

W.-J. Wang, Y. Tang, J. Xiong, and Y.-C. Zhang, â€œStock market index prediction based on reservoir computing models,â€ Expert Syst. Appl., vol. 178, p. 115022, 2021.

S. Asvapoositkul and R. Preece, â€œDecision tree-based prediction model for small signal stability and generation-rescheduling preventive control,â€ Electr. Power Syst. Res., vol. 196, p. 107200, 2021.

DOI: http://dx.doi.org/10.18517/ijaseit.13.1.17217

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development