Gold Nanoparticles Stimulate the Maturation and Activation of Mouse Bone Marrow Dendritic Cells

Andrea Aluisa, Alexis Debut, Rachid Seqqat, Marbel Torres Arias


Nanomedicine is an interdisciplinary science that links nanotechnology, nanoscience and nanoengineering to the field of health and the use of nanoscale tools, in this case, nanoparticles have great therapeutic potential against target cells such as dendritic cells (DC). DCs are highly motile cells whose main function is antigen presentation; they are mediators between innate and adaptive immunity. In this investigation, DCs were differentiated and matured with granulocyte-macrophage colony stimulating factor (GM-CSF), 25 ug/mL and spherical gold nanoparticles (AuNPs) of approximately 30 nm at concentrations of 5 to 200 ug/mL. DCs were obtained from the bone marrow of adult mice; their characterization was performed by means of RT-PCR, scanning electron microscopy (SEM) and confocal to know their morphology and the location of the nanoparticles inside. The bone marrow DCs (bmDCs) possibly differentiated into cCD1 dendritic cells, their mature morphological status was determined by the presence of co-stimulatory factors (CD40, CD86 and CD11c), in addition to MHC II and CIITA when in contact with AuNPs, the results were confirmed by SEM observation due to their star-like shape. In terms of the location of the AuNPs they would be clustered and outside the nucleus. The discovery of nanoparticles that do not cause significant cytotoxicity, activate dendritic cells, and produce cytokines, causing phenotypic changes in them, enhancing, and modulating the adaptive immune response or generating a targeted immunotherapy in the presence of different pathogens in the organism.


Nanomedicine; dendritic cells; gold nanoparticles.

Full Text:



K. Niikura et al., «Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo», ACS Nano, vol. 7, n.o 5, pp. 3926-3938, 2013, doi: 10.1021/nn3057005.

K. L. Hilligan y F. Ronchese, «Antigen presentation by dendritic cells and their instruction of CD4+ T helper cell responses», Cellular and Molecular Immunology, vol. 17, n.o 6, p. 587, jun. 2020, doi: 10.1038/S41423-020-0465-0.

X. Han et al., «Biomaterial-assisted biotherapy: A brief review of biomaterials used in drug delivery, vaccine development, gene therapy, and stem cell therapy», Bioactive Materials, vol. 17, p. 29, nov. 2022, doi: 10.1016/J.BIOACTMAT.2022.01.011.

D. M. Mokhtar y M. M. Hussein, «Morphological characteristic and functional dependencies of dendritic cell in developing rabbit lung during fetal and neonatal life», Developmental Biology, 2019, doi: 10.1016/j.ydbio.2019.06.013.

W. Wang, J. Li, K. Wu, B. Azhati, y M. Rexiati, «Culture and identification of mouse bone marrow-derived dendritic cells and their capability to induce T lymphocyte proliferation», Medical Science Monitor, vol. 22, pp. 244-250, 2016, doi: 10.12659/MSM.896951.

S. Balan, M. Saxena, y N. Bhardwaj, «Dendritic cell subsets and locations», International Review of Cell and Molecular Biology, vol. 348, pp. 1-68, ene. 2019, doi: 10.1016/BS.IRCMB.2019.07.004.

J. A. Soto et al., «The Role of Dendritic Cells During Infections Caused by Highly Prevalent Viruses», Frontiers in Immunology, vol. 11, p. 1513, jul. 2020, doi: 10.3389/FIMMU.2020.01513.

M. B. Vázquez, M. Sureda, y J. Rebollo, «Dendritic cells I: Basic biology and functions», Inmunologia, vol. 31, n.o 1, pp. 21-30, 2012, doi: 10.1016/j.inmuno.2011.10.001.

T. A. Patente, M. P. Pinho, A. A. Oliveira, G. C. M. Evangelista, P. C. Bergami-Santos, y J. A. M. Barbuto, «Human dendritic cells: Their heterogeneity and clinical application potential in cancer immunotherapy», Frontiers in Immunology, vol. 10, n.o JAN, pp. 1-18, 2019, doi: 10.3389/fimmu.2018.03176.

Z. Min et al., «Lipopolysaccharide-Activated Bone Marrow-Derived Dendritic Cells Suppress Allergic Airway Inflammation by Ameliorating the Immune Microenvironment», Frontiers in Immunology, vol. 12, p. 1, may 2021, doi: 10.3389/FIMMU.2021.595369/FULL.

I. Khan, K. Saeed, y I. Khan, «Nanoparticles: Properties, applications and toxicities», Arabian Journal of Chemistry, vol. 12, n.o 7, pp. 908-931, nov. 2019, doi: 10.1016/J.ARABJC.2017.05.011.

R. Mateu Ferrando, L. Lay, y L. Polito, «Gold nanoparticle-based platforms for vaccine development», Drug Discovery Today: Technologies, vol. 38, pp. 57-67, dic. 2020, doi: 10.1016/J.DDTEC.2021.02.001.

S. M. Curley y D. Putnam, «Biological Nanoparticles in Vaccine Development», Frontiers in Bioengineering and Biotechnology, vol. 10, mar. 2022, doi: 10.3389/FBIOE.2022.867119.

J. S. He et al., «The Application of and Strategy for Gold Nanoparticles in Cancer Immunotherapy», Frontiers in Pharmacology, vol. 12, p. 1430, jun. 2021, doi: 10.3389/FPHAR.2021.687399/BIBTEX.

N. R. S. Sibuyi et al., «Multifunctional Gold Nanoparticles for Improved Diagnostic and Therapeutic Applications: A Review», Nanoscale Research Letters 2021 16:1, vol. 16, n.o 1, pp. 1-27, dic. 2021, doi: 10.1186/S11671-021-03632-W.

A. L. Bailly et al., «In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles», Scientific Reports 2019 9:1, vol. 9, n.o 1, pp. 1-12, sep. 2019, doi: 10.1038/s41598-019-48748-3.

A. C. Carr, «A new clinical trial to test high-dose vitamin C in patients with COVID-19.», Critical care (London, England), vol. 24, n.o 1, p. 133, abr. 2020, doi: 10.1186/s13054-020-02851-4.

S. A. Bhat, S. A. Rather, A. Iqbal, H. A. Qureshi, y N. Islam, «Immunomodulators for Curtailing COVID-19 : a Positive Approach», vol. 10, pp. 286-294, 2020.

S. Ahmad, A. A. Zamry, H. T. T. Tan, K. K. Wong, J. K. Lim, y R. Mohamud, «Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties», Molecular Immunology, vol. 91, n.o September, pp. 123-133, 2017, doi: 10.1016/j.molimm.2017.09.001.

G. Flórez-Grau, I. Zubizarreta, R. Cabezón, P. Villoslada, y D. Benitez-Ribas, «Tolerogenic dendritic cells as a promising antigen-specific therapy in the treatment of multiple sclerosis and neuromyelitis optica from preclinical to clinical trials», Frontiers in Immunology, vol. 9, n.o MAY, pp. 1-10, 2018, doi: 10.3389/fimmu.2018.01169.

M. S. Goldberg, «Improving cancer immunotherapy through nanotechnology», Nature Reviews Cancer, 2019, doi: 10.1038/s41568-019-0186-9.

T. Brzicova et al., «Molecular Responses in THP-1 Macrophage-Like Cells Exposed to Diverse Nanoparticles», Nanomaterials, pp. 1-19, 2019, doi: 10.3390/nano9050687.

J. S. B. de Vlieger et al., «Report of the AAPS Guidance Forum on the FDA Draft Guidance for Industry: "Drug Products, Including Biological Products, that Contain Nanomaterials"», AAPS Journal, vol. 21, n.o 4, 2019, doi: 10.1208/s12248-019-0329-7.

A. C. Anselmo y S. Mitragotri, «Nanoparticles in the clinic: An update», Bioengineering & Translational Medicine, vol. 4, n.o 3, pp. 1-16, 2019, doi: 10.1002/btm2.10143.

G. J. Sánchez et al., «Fluorescent Radiosensitizing Gold Nanoparticles», International Journal of Molecular Sciences, vol. 20, n.o 18, sep. 2019, doi: 10.3390/IJMS20184618.

G. Colvin et al., «Murine marrow cellularity and the concept of stem cell competition : geographic and quantitative determinants in stem cell biology», pp. 575-583, 2004, doi: 10.1038/sj.leu.2403268.

L. E. Showalter, B. J. Czerniecki, K. Kodumudi, y G. K. Koski, «Murine dendritic cells grown in serum-free culture show potent therapeutic activity when loaded with novel th epitopes in an orthotopic model of her2pos breast cancer», Vaccines, vol. 9, n.o 9, sep. 2021, doi: 10.3390/VACCINES9091037/S1.

Y. P. Jia, B. Y. Ma, X. W. Wei, y Z. Y. Qian, «The in vitro and in vivo toxicity of gold nanoparticles», Chinese Chemical Letters, vol. 28, n.o 4, pp. 691-702, 2017, doi: 10.1016/j.cclet.2017.01.021.

S. Castro-Gamboa et al., «Toxicity of silver nanoparticles in mouse bone marrow-derived dendritic cells: Implications for phenotype», Journal of Immunotoxicology, vol. 16, n.o 1, pp. 54-62, ene. 2019, doi: 10.1080/1547691x.2019.1584652.

D. Jin y J. Sprent, «GM-CSF Culture Revisited: Preparation of Bulk Populations of Highly Pure Dendritic Cells from Mouse Bone Marrow», The Journal of Immunology, vol. 201, n.o 10, pp. 3129-3139, oct. 2018, doi: 10.4049/jimmunol.1800031.

S. Landmann et al., «Maturation of Dendritic Cells Is Accompanied by Rapid Transcriptional Silencing of Class II Transactivator (CIITA) Expression», Journal of Experimental Medicine, vol. 194, n.o 4, 2001.

F. J. Cueto, C. del Fresno, y D. Sancho, «DNGR-1, a Dendritic Cell-Specific Sensor of Tissue Damage That Dually Modulates Immunity and Inflammation», Frontiers in Immunology, vol. 10, n.o February, pp. 1-8, 2020, doi: 10.3389/fimmu.2019.03146.

A. Hafner, M. L. Bulyk, A. Jambhekar, y G. Lahav, «The multiple mechanisms that regulate p53 activity and cell fate», Nature reviews. Molecular cell biology, vol. 20, n.o 4, pp. 199-210, abr. 2019, doi: 10.1038/S41580-019-0110-X.

J. Ding et al., «Murine hepatoma treatment with mature dendritic cells stimulated by Trichinella spiralis excretory/secretory products», Parasite, vol. 27, 2020, doi: 10.1051/PARASITE/2020045.

X. Bai, J. Wang, Q. Mu, y G. Su, «In vivo Protein Corona Formation: Characterizations, Effects on Engineered Nanoparticles' Biobehaviors, and Applications», Frontiers in Bioengineering and Biotechnology, vol. 9, p. 263, mar. 2021, doi: 10.3389/FBIOE.2021.646708/BIBTEX.

A. K. Dey, A. Gonon, E. I. Pécheur, M. Pezet, C. Villiers, y P. N. Marche, «Impact of Gold Nanoparticles on the Functions of Macrophages and Dendritic Cells», Cells 2021, Vol. 10, Page 96, vol. 10, n.o 1, p. 96, ene. 2021, doi: 10.3390/CELLS10010096.

S. Tomić et al., «Size-dependent effects of gold nanoparticles uptake on maturation and antitumor functions of human dendritic cells in vitro», PLoS ONE, vol. 9, n.o 5, p. e96584, may 2014, doi: 10.1371/journal.pone.0096584.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development