Native Bacillus subtilis Strains Efficiently Control Lupin Anthracnose Both under Greenhouse and in Field Conditions

Falconí C.E, Yánez-Mendizábal V, Claudio D.R


Colletotrichum acutatum is the cause of lupin anthracnose in the Andean zone. The pathogen affects the crop throughout its entire production cycle, causing losses of up to 100%. In previous studies, native strains of B. subtilis (CtpxS1-1; CtpxS2-1 and CtpxZ3) from the province of Cotopaxi reduced anthracnose infections in seed and seedlings. This study evaluated the potential biological control of these strains by using two lupin anthracnose susceptible cultivars under greenhouse conditions and in the field. Plants of I-451 Güaranguito and I-450 Andino cultivars were treated with active biomass from each B. subtilis strain. Pre-inoculated plants that received a bacterial concentration of 1 × 109 colony-forming units per milliliter (CFU/ml) showed a reduction by ten times in the stem lesion diameter when compared with plants artificially infected with the pathogen alone in greenhouse evaluations. Sequential applications of antagonists every two-week allow for quantifying their biocontrol efficiency under field conditions. A significant (P<0.05) reduction was found for the area under the disease progression curve (AUDPC) when comparing the treatments that received B. subtilis with the control plants naturally infected with anthracnose, in both lupin susceptible cultivars, along the 2015 and 2019 growing seasons. Analysis of population dynamics in the phyllosphere of lupin showed that B. subtilis survived over 7.0 LOG CFU/g on lupin leaf and stem surface throughout four evaluations. This fact was associated with its protective effect along vegetative, flowering, and pod-filling phenological stages. Results of this study showed that native B. subtilis strains efficiently control lupin anthracnose.


Lupin anthracnose; Bacillus subtilis; Colletotrichum acutatum; Biological control; AUDPC.

Full Text:



C. E. Falconí, Lupinus mutabilis in Ecuador with special emphasis on anthracnose resistance. Wageningen University and Research, 2012.

M. M. Lucas et al., “The future of lupin as a protein crop in Europe,†Front. Plant Sci., vol. 6, no. September, p. 705, 2015, doi: 10.3389/fpls.2015.00705.

C. E. Falconí and V. Yánez-Mendizábal, “Efficacy of UV-C radiation to reduce seedborne anthracnose (Colletotrichum acutatum) from Andean lupin (Lupinus mutabilis),†Plant Pathol., vol. 67, no. 4, pp. 831–838, 2018, doi: 10.1111/ppa.12793.

P. Talhinhas, R. Baroncelli, and G. Le Floch, “Anthracnose of lupins caused by Colletotrichum lupini: A recent disease and a successful worldwide pathogen,†Journal of Plant Pathology, vol. 98, no. 1. JSTOR, pp. 5–14, 2016, doi: 10.4454/JPP.V98I1.040.

L. C. Trugo, E. von Baer, and D. von Baer, “Lupin Breeding,†in Reference Module in Food Science, Elsevier, 2016.

C. E. Falconí, R. G. F. Visser, and A. W. van Heusden, “Phenotypic, molecular, and pathological characterization of Colletotrichum acutatum associated with Andean lupine and tamarillo in the Ecuadorian Andes,†Plant Dis., vol. 97, no. 6, pp. 819–827, 2013, doi: 10.1094/PDIS-02-12-0175-RE.

M. M. Begum, M. Sariah, A. B. Puteh, and M. A. Zainal Abidin, “Detection of seed-borne fungi and site of infection by Colletotrichum truncatum in naturally-infected soybean seeds,†Int. J. Agric. Res., vol. 2, no. 9, pp. 812–819, 2007, doi: 10.3923/ijar.2007.812.819.

M. Yesuf and S. Sangchote, “Seed Transmission and Epidemics of Colletotrichum lindemuthianum in the Major Common Bean Growing Areas of Ethiopia,†Agric. Nat. Resour., vol. 45, no. 1, pp. 34–45, 2005.

G. J. Thomas and M. W. Sweetingham, “Fungicide seed treatments reduce seed transmission and severity of lupin anthracnose caused by Colletotrichum gloeosporioides,†Australas. Plant Pathol., vol. 32, no. 1, pp. 39–46, 2003, doi: 10.1071/AP02059.

C. E. Falconí and V. Yánez–Mendizábal, “Dry heat treatment of Andean lupin seed to reduce anthracnose infection,†Crop Prot., vol. 89, pp. 178–183, 2016, doi: 10.1016/j.cropro.2016.07.021.

C. E. Falconí and V. Yánez-Mendizábal, “Solar UV-B radiation limits seedborne anthracnose infection and induces physiological and biochemical responses in Lupinus mutabilis,†Plant Pathol., vol. 68, no. 9, pp. 1635–1644, 2019, doi: 10.1111/ppa.13086.

M. Ã. Mejía-Bautista, A. Reyes-Ramírez, J. Cristobal-Alejo, J. M. Tun-Suárez, L. del C. Borges-Gómez, and J. R. Pacheco-Aguilar, “Bacillus spp. en el Control de la Marchitez Causada por Fusarium spp. en Capsicum chinense,†Rev. Mex. Fitopatol. Mex. J. Phytopathol., vol. 34, no. 3, pp. 208–222, 2016, doi: 10.18781/

D. Peralvo Lupera and L. Saavedra Ruíz, “Validación de biopreparados en base a bacterias epifitas para el control de la moniliasis en cacao fino de roma en el cantón Valencia de la provincia de Los Ríos,†2006.

C. Layton, E. Maldonado, L. Monroy, L. C. Corrales Ramírez MSC, and L. C. Sánchez Leal MSC, “Bacillus spp.; perspectiva de su efecto biocontrolador mediante antibiosis en cultivos afectados por fitopatógenos,†Nova, vol. 9, no. 16, p. 177, 2011, doi: 10.22490/24629448.501.

V. Yánez-Mendizábal, C. E. Falconi, and A. C. Grijalva, “Bacillus spp. evaluation to control anthracnose infection on Andean lupin seed (Lupinus mutabilis Sweet),†in Phytopathology, 2015, vol. 105, no. 11, p. 153.

V. Yánez-Mendizábal and C. E. Falconí, “Efficacy of Bacillus spp. to biocontrol of anthracnose and enhance plant growth on Andean lupin seeds by lipopeptide production,†Biol. Control, vol. 122, pp. 67–75, 2018, doi: 10.1016/j.biocontrol.2018.04.004.

P. Jacques et al., “Optimization of biosurfactant lipopeptide production from Bacillus subtilis S499 Plackett-Burman design,†in Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 1999, vol. 77–79, no. 1–3, pp. 223–233, doi: 10.1385/abab:77:1-3:223.

C. E. Falconi, R. G. F. Visser, and S. Van Heusden, “Influence of plant growth stage on resistance to anthracnose in Andean lupin (Lupinus mutabilis),†Crop Pasture Sci., vol. 66, no. 7, pp. 729–734, 2015, doi: 10.1071/CP14104.

V. Yánez-Mendizábal et al., “Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit,†Biocontrol Sci. Technol., vol. 21, no. 4, pp. 409–426, 2011, doi: 10.1080/09583157.2010.541554.

S. De Haan et al., Metodolog{’i}as de Evaluación Estándar y Manejo de Datos de Clones Avanzados de Papa. Modulo 2: Evaluación del rendimiento de tubérculos sanos de clones avanzados de papa.: Gu{’i}a para Colaboradores Internacionales. International Potato Center, 2014.

R. K. P. Yadav, K. Kakamanoli, and D. Vokou, “ESTIMATING BACTERIAL POPULATION ON THE PHYLLOSPHERE BY SERIAL DILUTION PLATING AND LEAF IMPRINT METHODS,†Ecoprint An Int. J. Ecol., vol. 17, pp. 47–52, 1970, doi: 10.3126/eco.v17i0.4105.

X. Q. Wang, D. L. Zhao, L. L. Shen, C. L. Jing, and C. S. Zhang, “Application and mechanisms of Bacillus subtilis in biological control of plant disease,†in Role of Rhizospheric Microbes in Soil: Stress Management and Agricultural Sustainability, vol. 1, Springer Singapore, 2018, pp. 225–250.

H. Ryu, H. Park, D.-S. Suh, G. H. Jung, K. Park, and B. D. Lee, “Biological control of Colletotrichum panacicola on Panax ginseng by Bacillus subtilis HK-CSM-1,†J. Ginseng Res., vol. 38, no. 3, pp. 215–219, 2014.

B. Liu et al., “Biological control of take-all in wheat by endophytic Bacillus subtilis E1R-j and potential mode of action,†Biol. Control, vol. 49, no. 3, pp. 277–285, 2009, doi: 10.1016/j.biocontrol.2009.02.007.

M. Ongena and P. Jacques, “Bacillus lipopeptides: versatile weapons for plant disease biocontrol,†Trends in Microbiology, vol. 16, no. 3. Elsevier, pp. 115–125, 2008, doi: 10.1016/j.tim.2007.12.009.

S. W. Lee et al., “Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions,†Acta Physiol. Plant., vol. 36, no. 6, pp. 1353–1362, 2014, doi: 10.1007/s11738-014-1514-z.

V. Yánez-Mendizábal and C. E. Falconí, “Bacillus subtilis CtpxS2-1 induces systemic resistance against anthracnose in Andean lupin by lipopeptide production,†Biotechnol. Lett., vol. 43, no. 3, pp. 719–728, 2021, doi: 10.1007/s10529-020-03066-x.

F. Wei, X. Hu, and X. Xu, “Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions,†Sci. Rep., vol. 6, no. 1, pp. 1–9, 2016.

B. T. Demoz and L. Korsten, “Bacillus subtilis attachment, colonization, and survival on avocado flowers and its mode of action on stem-end rot pathogens,†Biol. Control, vol. 37, no. 1, pp. 68–74, 2006, doi: 10.1016/j.biocontrol.2005.11.010.

M. Cruz-Martín, M. Acosta-Suárez, E. Mena, B. Roque, T. Pichardo, and Y. Alvarado-Capó, “Antifungal activity of Musa phyllosphere Bacillus pumilus strain against Mycosphaerella fijiensis,†Trop. Plant Pathol., vol. 42, no. 2, pp. 121–125, 2017, doi: 10.1007/s40858-017-0139-3.

V. Yánez-Mendizábal et al., “Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying,†J. Appl. Microbiol., vol. 112, no. 5, pp. 954–965, 2012, doi: 10.1111/j.1365-2672.2012.05258.x.

V. Yánez-Mendizabal, I. Viñas, J. Usall, T. Cañamás, and N. Teixidó, “Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8,†Biotechnol. Lett., vol. 34, no. 4, pp. 729–735, 2012, doi: 10.1007/s10529-011-0834-y.

V. Yánez-Mendizábal, I. Viñas, J. Usall, R. Torres, C. Solsona, and N. Teixidó, “Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products,†Biol. Control, vol. 60, no. 3, pp. 280–289, 2012, doi: 10.1016/j.biocontrol.2011.12.001.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development