Analysis of the Fly Population in the Community Around the Landfill Area through Ex Post Facto Approach

Muhammad Nur, Muhammad Ali Sarong, - Mudatsir, Muhammad Sayuthi, - Marlina

Abstract


Flies cohabit with humans, particularly in areas with poor sanitation, producing health problems. Flies serve as vectors for spreading a variety of harmful bacteria, either directly or through food. This research aims to use an ex post facto approach to determine the amount of diversity and distribution patterns of flies in Gampong Jawa, Banda Aceh City, Indonesia. Furthermore, this study can be used as a reference for the sorts of diseases distributed in the community and a factor in fly population control models for the prevention of infectious diseases in the area. The parameters chosen were the diversity index and the fly distribution pattern. Based on the results obtained, the diversity index tended to be low. The moderate diversity index was reached only in clusters 2 (1.02) and 3 (1.08) in the first-day morning, cluster 2 (1.2) in the second-day morning, cluster 3 (1.18) in the morning, and cluster 4 (1.01) in the afternoon of the third-day observation. In terms of distribution pattern parameters, the results obtained for uniform and clumped distribution patterns are the same when seen from the four clusters observed. According to the findings of this study, the fly diversity index in Gampong Jawa is still low, and the distribution pattern is homogeneous and clumped. As a result, to avoid pathogen transmission, a fly control model must be developed.

Keywords


Fly population; pathogen vectors; ex post facto; diversity index; distribution pattern.

Full Text:

PDF

References


C. N. Hodson and L. Ross, “Evolutionary Perspectives on Germline-Restricted Chromosomes in Flies (Diptera),†Genome Biol. Evol., vol. 13, no. 6, pp. 1–19, 2021.

W. A. Holthuijzen et al., “Fly on the Wall: Comparing Arthropod Communities between Islands with and without House Mice (Mus musculus)1,†Pacific Sci., vol. 75, no. 3, Sep. 2021.

S. Sulaeha, A. H. Bahtiar, and M. Melina, “Identification fruit fly species associated with watermelon plants (Citrullus lanatus (Thunb.) Matsum. & Nakai) in South of Sulawesi, Indonesia,†IOP Conf. Ser. Earth Environ. Sci., vol. 486, no. 1, 2020.

H. H. A. M. Abdullah et al., “Molecular characterization of some equine vector-borne diseases and associated arthropods in Egypt,†Acta Trop., vol. 227, no. November 2021, p. 106274, Mar. 2022.

R. Issa, “Musca domestica acts as transport vector hosts,†Bull. Natl. Res. Cent., vol. 43, no. 73, pp. 1–5, 2019.

P. O. Odeniran, A. A. Onifade, E. T. MacLeod, I. O. Ademola, S. Alderton, and S. C. Welburn, “Mathematical modelling and control of African animal trypanosomosis with interacting populations in West Africa—Could biting flies be important in main taining the disease endemicity?,†PLoS One, vol. 15, no. 11, p. e0242435, Nov. 2020.

J. L. Thomson, N. Cernicchiaro, L. Zurek, and D. Nayduch, “Cantaloupe Facilitates Salmonella Typhimurium Survival within and Transmission among Adult House Flies (Musca domestica L.),†Foodborne Pathog. Dis., vol. 18, no. 1, pp. 49–55, 2021.

R. C. Reuben, S. D. Gyar, and M. M. A. Danladi, “COVID-19: Probable involvement of insects in the mechanical transmission of novel coronavirus (2019-nCoV),†Microbes Infect. Dis., vol. 1, no. 3, pp. 111–117, Sep. 2020.

M. S. Jones et al., “Organic farms conserve a dung beetle species capable of disrupting fly vectors of foodborne pathogens,†Biol. Control, vol. 137, no. May, p. 104020, 2019.

E. D. Berry, J. E. Wells, L. M. Durso, K. M. Friesen, J. L. Bono, and T. V. Suslow, “Occurrence of escherichia coli o157:H7 in pest flies captured in leafy greens plots grown near a beef cattle feedlot,†J. Food Prot., vol. 82, no. 8, pp. 1300–1307, 2019.

R. T. Larbi, D. Y. Atiglo, M. B. Peterson, A. A. E. Biney, N. D. Dodoo, and F. N. A. Dodoo, “Household food sources and diarrhoea incidence in poor urban communities, Accra Ghana,†PLoS One, vol. 16, no. 1 January, pp. 1–18, 2021.

B. L. Svaefullah et al., “Maja Fruit Extracts Inhibit Escherichia coli, Reduce Fly Larvae Population, and Ammonia Emission of Chicken Excreta,†Trop. Anim. Sci. J., vol. 43, no. 4, pp. 369–376, 2020.

R. C. Pace, J. L. Talley, T. L. Crippen, and A. C. Wayadande, “Filth fly transmission of Escherichia coli O157:H7 and Salmonella enterica to lettuce, Lactuca sativa,†Ann. Entomol. Soc. Am., vol. 110, no. 1, pp. 83–89, 2017.

B. Wadaskar, “Detection of Antimicrobial Resistance in Escherichia coli and Salmonella Isolated from Flies Trapped at Animal and Poultry Farm Premises,†J. Anim. Res., vol. 11, no. 3, pp. 341–350, 2021.

J. L. Thomson, K. M. Yeater, L. Zurek, and D. Nayduch, “Abundance and accumulation of Escherichia coli and salmonella typhimurium procured by male and female house flies (diptera: Muscidae) exposed to cattle manure,†Ann. Entomol. Soc. Am., vol. 110, no. 1, pp. 37–44, 2017.

M. Kökdener and F. Kiper, “Effects of Larval Population Density and Food Type on the Life Cycle of Musca domestica (Diptera: Muscidae),†Environ. Entomol., vol. 50, no. 2, pp. 324–329, Apr. 2021.

M. H. Khan, N. H. Khuhro, M. Awais, M. U. Asif, and R. Muhammad, “Seasonal Abundance of Fruit Fly, Bactrocera species (Diptera: Tephritidae) with Respect to Environmental Factors in Guava and Mango Orchards,†Pakistan J. Agric. Res., vol. 34, no. 2, p. 266, 2021.

A. D. Moelyaningrum, D. Prajnawita, and P. T. Ningrum, “Analysis Flies Density at Final Waste Disposal Jember Distric Area, Indonesia (Studi at Pakusari landfill and Ambulu landfill),†J. Kesehat. Lingkung., vol. 12, no. 2, p. 136, 2020.

T. B. Tufa et al., “Carriage of ESBL-producing Gram-negative bacteria by flies captured in a hospital and its suburban surroundings in Ethiopia,†Antimicrob. Resist. Infect. Control, vol. 9, no. 1, pp. 1–7, 2020.

S. M. Alzahrani, “Evaluation of triflumuron and pyriproxyfen as alternative candidates to control house fly, Musca domestica L. (Diptera: Muscidae), in Riyadh city, Saudi Arabia,†PLoS One, vol. 16, no. 4 April, pp. 1–11, 2021.

J. Villazana and A. Alyokhin, “Tolerance of Immature Black Soldier Flies (Diptera: Stratiomyidae) to Cold Temperatures above and below Freezing Point,†J. Econ. Entomol., vol. 112, no. 6, pp. 2632–2637, 2019.

I. H. Leyo, Z. M. Ousmane, G. Noël, F. Francis, and R. C. Megido, “Breeding enhancement of Musca domestica L. 1758: Egg load as a measure of optimal larval density,†Insects, vol. 12, no. 11, pp. 1–11, 2021.

N. S. Mohammed Ali, “The efficacy of insecticide indoxacarb (Avaunt) against larval stage of house fly musca domestica L.,†Res. J. Pharm. Technol., vol. 12, no. 5, pp. 2363–2371, 2019.

P. Cecílio et al., “Exploring lutzomyia longipalpis sand fly vector competence for leishmania major parasites,†J. Infect. Dis., vol. 222, no. 7, pp. 1199–1203, 2020.

M. A. Bezerra-Santos and D. Otranto, “Keds, the enigmatic flies and their role as vectors of pathogens,†Acta Trop., vol. 209, 2020.

M. A. Sobur et al., “Higher seasonal temperature enhances the occurrence of methicillin resistance of Staphylococcus aureus in house flies (Musca domestica) under hospital and environmental settings,†Folia Microbiol. (Praha)., vol. 67, no. 1, pp. 109–119, Feb. 2022.

Y. Chen, X. Zhang, Z. Chen, M. Song, and J. Wang, “Fine-grained classification of fly species in the natural environment based on deep convolutional neural network,†Comput. Biol. Med., vol. 135, no. 1, p. 104655, 2021.

M. Basna, R. Koneri, and A. Papu, “Distribusi Dan Diversitas Serangga Tanah Di Taman Hutan Raya Gunung Tumpa Sulawesi Utara,†J. MIPA Unsrat, vol. 6, no. 1, pp. 36–42, 2017.

C. Liu et al., “Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020,†Ecol. Indic., vol. 138, p. 108818, May 2022.

H. W. K. Heng, J. L. S. Ooi, Y. A. Affendi, A. A. Kee Alfian, and L. S. Ponnampalam, “Dugong feeding grounds and spatial feeding patterns in subtidal seagrass: A case study at Sibu Archipelago, Malaysia,†Estuar. Coast. Shelf Sci., vol. 264, p. 107670, Jan. 2022.

Q. Liu et al., “Spatial clustering and source-specific risk of combined pollutants in soils from an industrial area in Shanxi Province, China,†Environ. Pollut., vol. 299, p. 118925, Apr. 2022.

J. E. Leedy, P. D., & Ormrod, “Practical research. Planning and design (11th ed.). Boston, MA: Pearson,†Irish J. Psychol., vol. 32, no. 1–2, pp. 4–13, 2015.

G. E. Mills and L. R. Gay, Educational research: Competencies for analysis and applications, Twelfth ed. New York: Pearson, 2019.

Rasminto, Nadiroh, Yufiarti, A. Agung, and B. B. Nurtisy, “The effect of personality and cognitive ability about reproduction health to healthy life motivation: An ex post facto approach,†IOP Conf. Ser. Earth Environ. Sci., vol. 747, no. 1, 2021.

R. R. Sharma, “Evolving a Model of Sustainable Leadership: An Ex-post Facto Research,†Vision, vol. 23, no. 2, pp. 152–169, 2019.

M. H. Mandal, A. Roy, S. Ghosh, A. Basak, and G. Siddique, “Assemblage of wetland bird Species in Purbasthali Oxbow Lake, West Bengal, India: Implications for Management,†Ornis Hungarica, vol. 29, no. 2, pp. 25–45, 2021.

D. Ni, Z. Zhang, and X. Liu, “Benthic ecological quality assessment of the Bohai Sea, China using marine biotic indices,†Mar. Pollut. Bull., vol. 142, no. March, pp. 457–464, 2019.

Q. Song, B. Wang, J. Wang, and X. Niu, “Endangered and endemic species increase forest conservation values of species diversity based on the Shannon-Wiener index,†IForest, vol. 9, no. JUNE2016, pp. 469–474, 2016.

M. K. Amaral, S. Péllico Netto, C. Lingnau, and A. Figueiredo Filho, “Evaluation of the morisita index for determination of the spatial distribution of species in a fragment of araucaria forest,†Appl. Ecol. Environ. Res., vol. 13, no. 2, pp. 361–372, 2015.

J. Golay, M. Kanevski, C. D. Vega Orozco, and M. Leuenberger, “The multipoint Morisita index for the analysis of spatial patterns,†Phys. A Stat. Mech. its Appl., vol. 406, pp. 191–202, 2014.

U. E. Akpovwovwo and A. Gbadegesin, “Species composition and distribution patterns of the Mangrove forests of the Western Niger Delta, Nigeria,†African Geogr. Rev., vol. 00, no. 00, pp. 1–15, 2021.

S. Yousefi et al., “Diversity of Phlebotomine sand flies (Diptera: Psychodidae) in mountainous and plain areas of an endemic focus of anthroponotic cutaneous leishmaniasis in Iran,†Asian Pac. J. Trop. Biomed., vol. 10, no. 5, p. 201, 2020.

M. Sánchez et al., “House fly (Musca domestica) larvae meal as an ingredient with high nutritional value: Microencapsulation and improvement of organoleptic characteristics,†Food Res. Int., vol. 145, no. May, 2021.

F. Sánchez-Bayo and K. A. G. Wyckhuys, “Worldwide decline of the entomofauna: A review of its drivers,†Biol. Conserv., vol. 232, no. January, pp. 8–27, Apr. 2019.

N. Brewer et al., “Persistence and Significance of Chlamydia trachomatis in the Housefly, Musca domestica L.,†Vector-Borne Zoonotic Dis., vol. 21, no. 11, pp. 854–863, 2021.

M. Al-Irsyad and E. N. Deniati, “Faktor yang Berhubungan dengan Indeks Populasi Lalat pada Tempat Penampungan Sementara (TPS) Sampah di Pasar Kota Malang dan Kota Batu,†Sport Sci. Heal., vol. 3, no. 6, pp. 429–439, 2021.

A. Robinson et al., “Responses of the putative trachoma vector, Musca sorbens, to volatile semiochemicals from human faeces,†PLoS Negl. Trop. Dis., vol. 14, no. 3, p. e0007719, Mar. 2020.

L. K. Zahn and A. C. Gerry, “Diurnal Flight Activity of House Flies (Musca domestica) is Influenced by Sex, Time of Day, and Environmental Conditions,†Insects, vol. 11, no. 6, p. 391, Jun. 2020.

I. M. Ihsan, R. Hidayat, and U. K. Hadi, “Pengaruh Suhu Udara Terhadap Perkembangan Pradewasa Lalat Rumah (Musca Domestica),†J. Teknol. Lingkung., vol. 17, no. 2, pp. 100–107, 2016.

A. Malik, N. Singh, and S. Satya, “House fly (Musca domestica): A review of control strategies for a challenging pest,†J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes, vol. 42, no. 4, pp. 453–469, 2007.

L. Afifah and D. Sugiono, “The Diversity of Insect in Paddy Field in Karawang, West Java with Different Pest Management Techniques,†J. Ilmu Pertan. Indones., vol. 25, no. 2, pp. 301–308, 2020.

O. A. Aina-Oduntan, Q. A. Onilude, J. A. George-Onaho, A. I. Woghiren, and O. R. Jeminiwa, “Spatial Distribution of Insect Diversity in Selected Locations within Forestry Research Institute of Nigeria, Ibadan, Nigeria,†J. Appl. Sci. Environ. Manag., vol. 25, no. 7, pp. 1249–1255, 2021.

J. Liu, X. Yan, X. Song, J. Zhang, D. Wu, and M. Gao, “Distribution characteristics of insect diversity in long-term fixed monitoring plots in Northeast China,†PLoS One, vol. 16, no. 8, p. e0250689, Aug. 2021.

E. P. Odum, “The strategy of ecosystem development BT - The ecological design and planning reader,†Ecol. Des. Plan. Read., pp. 203–216, 2014.

F. Ghougali, A. Si, N. Chaabane, and R. A. Medjber, “Oceanological and Hydrobiological Studies Diversity and distribution patterns of benthic insects in streams by,†2019.

X. Yang, M. Shao, T. Li, M. Gan, and M. Chen, “Community characteristics and distribution patterns of soil fauna after vegetation restoration in the northern Loess Plateau,†Ecol. Indic., vol. 122, p. 107236, 2021.

E. Engel, M. P. B. Pasini, and A. D. C. Lúcio, “Spatial distribution and sample size to estimate Euschistus heros population density in wild plants during off-season,†J. Plant Dis. Prot., vol. 128, no. 4, pp. 1073–1080, Aug. 2021.




DOI: http://dx.doi.org/10.18517/ijaseit.12.6.16969

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development