Quality of Sardine (Sardinella sp.) Peda during Storage as Affected by Salting Pre-Treatment Process and Chitosan

Normalina Arpi, Murna Muzaifa, - Hasanuddin, Mira Intania


Peda is an Indonesian fermented whole fish prepared by adding salt before the fermentation and drying process. The storage of fermented fish products will lead to a change in the quality due to microorganism growth. This research aimed to determine the chemical, microbial and sensory qualities of peda sardines during four months of storage as affected by the salting pre-treatment process and the use of chitosan. The treatment consisted of P0K1=fish added 20% salt for 6 hours then washed + no chitosan added; P0K2=fish added 20% salt for 6 hours then washed + 2% chitosan; P1K1=fish soaked in freshwater for 6 hours + no chitosan; P1K2=fish soaked in fresh water for 6 hours + 2% chitosan; P2K1=fish left at ambient temperature for 6 hours + no chitosan; P2K2=fish left at ambient temperature for 6 hours + 2% chitosan. The peda salt content were 10.52-12.54% after fermentation (0 months) and increased significantly (P < 0.05) to 14.11-18.51% after four months, lactic acid bacteria count were 10.47–11.37 log cfu/g (0 month) and increased significantly (P < 0.05) to 13.15–14.26 log cfu/g (4 months). The treatment of P1K2 was able to preserve a strong peda aroma until 4 months. A total of 10 volatile components in peda with the highest peak were identified and grouped as alcohol, ketone, alkane, and carboxylic acid. Undecanone was the most prominent aroma compound in sardines peda, with a total area of 6.23%. The treatment of P1K2 resulted in the overall best quality of peda.


Chitosan; fermented fish; peda; pre-treatment; undecanone.

Full Text:



J. Chen, M. Jayachandran, W. Bai, and B. Xu, “A critical review on the health benefits of fish consumption and its bioactive constituents,” Food Chem., vol. 369, no. March 2021, p. 130874, 2022, doi: 10.1016/j.foodchem.2021.130874.

V. Gudipati, “Role of Plant Extracts as Natural Additives in Fish and Fish Products-A Review Stress response in carps View project Some cycloadditions and photochemical reactions on isoxazoles View project,” Fish. Technol., vol. 54, no. December, pp. 145–154, 2017, [Online]. Available: https://www.researchgate.net/publication/321945174.

K. R. Sreelekshmi, K. Elavarasan, C. O. Mohan, and K. Ashok Kumar, “Training Manual on Seafood Value Addition,” Cochin, 2018.

Giyatmi and H. E. Irianto, “Indonesian Traditional Fermented Fish Ikan Peda,” in Encyclopedia of Marine Biotechnology, S. Kim, Ed. John Wiley & Sons Ltd, 2020, pp. 2895–2911.

N. Astria, T. Leksono, and D. Iriani, “The Effect Of Different Salt Concentration on The Quality Salt-Fermented (Peda) Mackerel (Rastrelliger kanaguarta),” Berk. Perikan. Terubuk, vol. 48, no. 3, pp. 1–12, 2020.

T. F. Putra, H. Suprapto, W. Tjahjaningsih, and H. Pramono, “The antagonistic activity of lactic acid bacteria isolated from peda, an Indonesian traditional fermented fish,” IOP Conf. Ser. Earth Environ. Sci., vol. 137, no. 1, 2018, doi: 10.1088/1755-1315/137/1/012060.

J. Zang et al., “Dynamics and diversity of microbial community succession during fermentation of Suan yu, a Chinese traditional fermented fish, determined by high throughput sequencing,” Food Res. Int., vol. 111, no. April, pp. 565–573, 2018, doi: 10.1016/j.foodres.2018.05.076.

F. A. B. Nikjuluw, “Pengolahan Ikan Asin Cakalang Banda,” Ambon, Indonesia, 2014.

F. Afrin, M. G. Rasul, M. Khan, T. Akter, C. Yuan, and A. K. M. Azad Shah, “Optimization of chitosan concentration on the quality and shelf life of frozen rohu (Labeo rohita) fillets,” Squalen Bull. Mar. Fish. Postharvest Biotechnol., vol. 16, no. 1, pp. 1–9, 2021, doi: 10.15578/squalen.504.

B. Karsli, E. Caglak, and W. Prinyawiwatkul, “Effects of high-molecular-weight chitosan coating prepared in different solvents on quality of catfish fillets during 6-month frozen storage,” J. Food Sci., vol. 86, no. 3, pp. 762–769, 2021, doi: 10.1111/1750-3841.15622.

M. A. Hussain et al., “Essential oils and chitosan as alternatives to chemical preservatives for fish and fisheries products: A review,” Food Control, vol. 129, no. December 2020, p. 108244, 2021, doi: 10.1016/j.foodcont.2021.108244.

Z. Ma, A. Garrido-Maestu, and K. C. Jeong, “Application, mode of action, and in vivo activity of chitosan and its micro- and nanoparticles as antimicrobial agents: A review,” Carbohydr. Polym., vol. 176, pp. 257–265, 2017, doi: 10.1016/j.carbpol.2017.08.082.

A. Muxika, A. Etxabide, J. Uranga, P. Guerrero, and K. de la Caba, “Chitosan as a bioactive polymer: Processing, properties and applications,” Int. J. Biol. Macromol., vol. 105, pp. 1358–1368, 2017, doi: 10.1016/j.ijbiomac.2017.07.087.

C. L. Ke, F. S. Deng, C. Y. Chuang, and C. H. Lin, “Antimicrobial actions and applications of Chitosan,” Polymers (Basel)., vol. 13, no. 6, 2021, doi: 10.3390/polym13060904.

Junianto, E. Octaviola, L. A. Putri, and M. Fauzi, “Review article : Application of Chitosan for Fish Preservation and Processed Products,” Glob. Sci. Journals, vol. 9, no. 5, pp. 1122–1135, 2021.

AOAC, “Official Methods of Analysis of Association of Official Analytical Chemists,” Washington, DC, 2019.

A. C. Ogodo, O. C. Ugbogu, R. A. Onyeagba, and H. C. Okereke, “Microbiological quality, proximate composition and in vitro starch/protein digestibility of Sorghum bicolor flour fermented with lactic acid bacteria consortia,” Chem. Biol. Technol. Agric., vol. 6, no. 1, pp. 1–9, 2019, doi: 10.1186/s40538-019-0145-4.

BSN, “Analisis kadar total Volatile Base TVB,” SNI 2354.8, 2009.

R. R. Madrera and B. S. Valles, “Determination of Volatile Compounds in Apple Pomace by Stir Bar Sorptive Extraction and Gas Chromatography-Mass Spectrometry (SBSE-GC-MS),” J. Food Sci., vol. 76, no. 9, 2011, doi: 10.1111/j.1750-3841.2011.02406.x.

S. A. Kemp, T. Hollowood, and J. Hort, Sensory Evaluation: A practical handbook. UK: Wiley-Blackwell, 2009.

A. S. Thariq, F. Swastawati, and T. Surti, “Pengaruh Perbedaan Konsentrasi Garam Pada Peda Ikan Kembung (Rastrelliger Neglectus) Terhadap Kandungan Asam Glutamat Pemberi Rasa Gurih (Umami),” J. Pengolah. dan Bioteknol. Has. Perikan., vol. 3, no. 3, pp. 104–111, 2014.

M. A. Gassem, “Microbiological and chemical quality of a traditional salted-fermented fish (Hout-Kasef) product of Jazan Region, Saudi Arabia,” Saudi J. Biol. Sci., vol. 26, no. 1, pp. 137–140, 2019, doi: 10.1016/j.sjbs.2017.04.003.

M. ecirc l eacute gnonfan K. Janvier et al., “Microbial population and physico-chemical composition of an African Fish based flavouring agent and taste enhancer,” African J. Food Sci., vol. 10, no. 10, pp. 227–237, 2016, doi: 10.5897/ajfs2016.1443.

F. Martin, E. Afrianto, Rosidah, and I. Rostini, “Characterization of Peda Patin Jambal with Various Salt Concentration as Environment Control,” Asian Food Sci. J., vol. 12, pp. 1–7, 2019, doi: 10.9734/afsj/2019/v12i130071.

J. Kindossi et al., “Production, consumption, and quality attributes of Lanhouin, a fish-based condiment from West Africa,” Food Chain, vol. 2, no. 1, pp. 117–130, 2012, doi: 10.3362/2046-1887.2012.009.

D. Roy, R. K. Majumdar, S. K. Maurya, H. H. Tripathi, B. Dhar, and B. M. Priyadarshini, “Understanding of traditional knowledge and characterization of telesecha fermented fish product of Tripura state,” Indian J. Nat. Prod. Resour., vol. 5, no. 4, pp. 351–358, 2014.

R. K. Majumdar, D. Roy, S. Bejjanki, and N. Bhaskar, “Chemical and microbial properties of shidal, a traditional fermented fish of Northeast India,” J. Food Sci. Technol., vol. 53, no. 1, pp. 401–410, 2016, doi: 10.1007/s13197-015-1944-7.

Y. Xu, J. Zang, J. M. Regenstein, and W. Xia, “Technological roles of microorganisms in fish fermentation: a review,” Crit. Rev. Food Sci. Nutr., vol. 61, no. 6, pp. 1000–1012, 2021, doi: 10.1080/10408398.2020.1750342.

S. Gupta, U. Mohanty, and R. K. Majumdar, “Isolation and characterization of lactic acid bacteria from traditional fermented fish product Shidal of India with reference to their probiotic potential,” Lwt, vol. 146, no. May, p. 111641, 2021, doi: 10.1016/j.lwt.2021.111641.

J. Han et al., “Effect of autochthonous lactic acid bacteria on fermented Yucha quality,” Lwt, vol. 123, no. January, p. 109060, 2020, doi: 10.1016/j.lwt.2020.109060.

R. Bao et al., “Shortening Fermentation Period and Quality Improvement of Fermented Fish, Chouguiyu, by Co-inoculation of Lactococcus lactis M10 and Weissella cibaria M3,” Front. Microbiol., vol. 9, 2018, doi: 10.3389/fmicb.2018.03003.

J. Pongsetkul and S. Benjakul, “Impact of sous vide cooking on quality and shelf-life of dried sour-salted fish,” J. Food Process. Preserv., vol. 46, no. 1, 2021, doi: 10.1111/jfpp.16142.

A. Killay, “Kitosan Sebagai Anti Bakteri Pada Bahan Pangan Yang Aman dan Tidak Berbahaya (Review),” in Prosiding FMIPA Universitas Pattimura, 2013, pp. 200–205.

W. Damayanti, E. Rochima, and Z. Hasan, “Application of Chitosan as Antibacterial for Pangasius Fillet at Low Temperature Storage,” JPHPI, vol. 19, no. 3, pp. 321–328, 2016, doi: 10.17844/jphpi.2016.19.3.321.

V. Waisundara, N. Jayawardena, and M. Watawana, “Safety of Fermented Fish Products,” in Regulating Safety of Traditional and Ethic Foods, Elsevier, 2016, pp. 149–168.

J. Zang, Y. Xu, W. Xia, and J. M. Regenstein, “Quality, functionality, and microbiology of fermented fish: a review,” Crit. Rev. Food Sci. Nutr., vol. 60, no. 7, pp. 1228–1242, 2020, doi: 10.1080/10408398.2019.1565491.

H. Wang, W. Su, Y. Mu, and C. Zhao, “Correlation Between Microbial Diversity and Volatile Flavor Compounds of Suan zuo rou, a Fermented Meat Product From Guizhou, China,” Front. Microbiol., vol. 12, no. October, pp. 1–14, 2021, doi: 10.3389/fmicb.2021.736525.

A. S. Talab and M. H. Ghanem, “Effects of different salt concentrations on the quality alterations and shelf-life of the grey mullet fish,” Egypt. J. Aquat. Biol. Fish., vol. 25, no. 1, pp. 583–595, 2021, doi: 10.21608/EJABF.2021.147329.

V. B. Anihouvi, E. Sakyi-Dawson, G. S. Ayernor, and J. D. Hounhouigan, “Microbiological changes in naturally fermented cassava fish (Pseudotolithus sp.) for lanhouin production,” Int. J. Food Microbiol., vol. 116, no. 2, pp. 287–291, 2007, doi: 10.1016/j.ijfoodmicro.2006.12.009.

D. Nicomrat, M. Lakthandee, N. Suenonmueng, and N. Marjang, “Lactic Acid Bacteria Starter Participating in Hygienic Long Shelf-Life of the Plaa-Som Fermented Product,” Appl. Mech. Mater., vol. 879, pp. 113–117, 2018, doi: 10.4028/www.scientific.net/amm.879.113.

K. Kamala, P. Sivaperumal, B. A. Paray, and M. K. Al-Sadoon, “Identification of haloarchaea during fermentation of Sardinella longiceps for being the starter culture to accelerate fish sauce production,” Int. J. Food Sci. Technol., vol. 56, no. 11, pp. 5717–5725, 2021, doi: 10.1111/ijfs.15183.

Y. Fajri, A.A. Sukarso, and D.A.C. Rasmi, “Fermentasi Ikan Kembung (Rastrelliger sp.) dalam Pembuatan Peda dengan Penambahan Bakteri Asam Laktat (BAL) yang Terkandung dalam Terasi Empang pada Berbagai Konsentrasi Garam,” J. Biol. Trop., vol. 14, no. 2, 2014, doi: 10.29303/jbt.v14i2.142.

A. Kusmarwati, U. Hizamah, and S. Wibowo, “Microbiological and chemical quality of a traditional salted-fermented fish (peda) product of Banten, Indonesia using Leuconostoc mesenteroides ssp. Cremonis BN12 as starter culture,” IOP Conf. Ser. Earth Environ. Sci., vol. 462, no. 1, 2020, doi: 10.1088/1755-1315/462/1/012020.

M. L. Fadhli, Romadhon, and Sumardianto, “Karakteristik Sensori Pindang Ikan Kembung (Rastrelliger Sp.) Dengan Penambahan Garam Bledug Kuwu,” J. Ilmu dan Teknol. Perikan., vol. 2, no. 1, pp. 1–9, 2020.

Y. Narzary, S. Das, A. K. Goyal, S. S. Lam, H. Sarma, and D. Sharma, “Fermented fish products in South and Southeast Asian cuisine: indigenous technology processes, nutrient composition, and cultural significance,” J. Ethn. Foods, vol. 8, no. 1, 2021, doi: 10.1186/s42779-021-00109-0.

L. Feng et al., “The relationship between flavor formation, lipid metabolism, and microorganisms in fermented fish products,” Food Funct., vol. 12, no. 13, pp. 5685–5702, 2021, doi: 10.1039/d1fo00692d.

R. W. Paparang, “Studi Pengaruh Variasi Konsentrasi Garam Terhadap Citarasa Peda Ikan Layang (Decapterus russelli),” Media Teknol. Has. Perikan., vol. 1, no. 1, pp. 17–20, 2013, doi: 10.35800/mthp.1.1.2013.4141.

Ira, “Kajian pengaruh berbagai kadar garam terhadap kandungan asam lemak esensial omega-3 ikan kembung (Rastrelliger Kanagurta) Asin Kering,” UNS, Surakarta, Indonesia, 2013.

M. E. López-Caballero, M. C. Gómez-Guillén, M. Pérez-Mateos, and P. Montero, “A chitosan-gelatin blend as a coating for fish patties,” Food Hydrocoll., vol. 19, no. 2, pp. 303–311, 2005, doi: 10.1016/j.foodhyd.2004.06.006.

M. Ali, J. Kusnadi, A. Aulanni’am, and Y. Yunianta, “Amino acids, fatty acids and volatile compounds of Terasi Udang, an Indonesian Shrimp paste, during fermentation,” AACL Bioflux, vol. 13, no. 2, pp. 938–950, 2020.

A. Giri, K. Osako, A. Okamoto, and T. Ohshima, “Olfactometric characterization of aroma active compounds in fermented fish paste in comparison with fish sauce, fermented soy paste and sauce products,” Food Res. Int., vol. 43, no. 4, pp. 1027–1040, 2010, doi: 10.1016/j.foodres.2010.01.012.

Y. J. Cha and K. R. Cadwallader, “Volatile Components in Salt‐Fermented Fish and Shrimp Pastes,” J. Food Sci., vol. 60, no. 1, pp. 19–24, 1995, doi: 10.1111/j.1365-2621.1995.tb05597.x.

V. B. Anihouvi, E. Sakyi-Dawson, G. S. Ayernor, and J. D. Hounhouigan, “Biochemical changes and aroma development during the spontaneous fermentation of cassava fish into Lanhouin and their influence on product acceptability,” J. Aquat. Food Prod. Technol., vol. 18, no. 4, pp. 370–384, 2009, doi: 10.1080/10498850903224919.

Y. Xu et al., “The contribution of autochthonous microflora on free fatty acids release and flavor development in low-salt fermented fish,” Food Chem., vol. 256, pp. 259–267, 2018, doi: 10.1016/j.foodchem.2018.02.142.

A. Singh et al., “Methyl nonyl ketone and linalool rich essential oils from three accessions of Zanthoxylum armatum (DC.) and their biological activities,” Int. J. Herb. Med., vol. 7, no. 3, pp. 20–28, 2019, [Online]. Available: https://www.researchgate.net/publication/334603364.

V. Simat, J. Vlahovic, B. Soldo, D. Skroza, and I. Ljubenkov, “Production and Refinement of Omega-3 Rich Oils,” Foods, vol. 3, pp. 1–14, 2019.

L. Zhang, X. Dong, X. Feng, S. A. Ibrahim, W. Huang, and Y. Liu, “Effects of drying process on the volatile and non-volatile flavor compounds of lentinula edodes,” Foods, vol. 10, no. 11, pp. 1–13, 2021, doi: 10.3390/foods10112836.

K. Grigorakis, I. Giogios, A. Vasilaki, and I. Nengas, “Effect of the fish oil, oxidation status and of heat treatment temperature on the volatile compounds of the produced fish feeds,” Anim. Feed Sci. Technol., vol. 158, no. 1–2, pp. 73–84, 2010, doi: 10.1016/j.anifeedsci.2010.03.012.

W. Pan et al., “Characterization of the Flavor Profile of Bigeye Tuna Slices Treated by Cold Plasma Using E-Nose and GC-IMS,” pp. 1–14, 2022.

M. Feng, Z. Dai, Z. Yin, X. Wang, S. Chen, and H. Zhang, “The volatile flavor compounds of Shanghai smoked fish as a special delicacy,” J. Food Biochem., vol. 45, no. 1, pp. 1–10, 2021, doi: 10.1111/jfbc.13553.

A. Ding et al., “Effect of fatty acids on the flavor formation of fish sauce,” Lwt, vol. 134, no. September, p. 110259, 2020, doi: 10.1016/j.lwt.2020.110259.

H. Wang, Y. Zhu, J. Zhang, X. Wang, and W. Shi, “Characteristic volatile compounds in different parts of grass carp by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry,” Int. J. Food Prop., vol. 23, no. 1, pp. 777–796, 2020, doi: 10.1080/10942912.2020.1758715.

C. Li et al., “Contribution of microbial community to flavor formation in tilapia sausage during fermentation with Pediococcus pentosaceus,” LWT, vol. 154, 2022, doi: https://doi.org/10.1016/j.lwt.2021.112628.

DOI: http://dx.doi.org/10.18517/ijaseit.12.2.16899


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development