### A Dataset-Driven Parameter Tuning Approach for Enhanced K-Nearest Neighbour Algorithm Performance

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

S. Yunsheng, Jiye L, Jing L and Xingwang Z, â€œAn efficient instance selection algorithm for k nearest Neighbour regressionâ€ Neurocomputing Vol. 251 pp. 26-34, 2017

U. G. Inyang, I. J. Eyoh, C. O. Nwokoro, F. B. Osang and A. A. Afolorunso â€œComparative Analytics of Classifiers on Resampled Datasets for Pregnancy Outcome Predictionâ€ International Journal of Advanced Computer Science and Applications, Vol 11 no. 6 pp 494-504, DOI:10.14569/IJACSA.2020.0110662, Jan. 2020

K. U. Syaliman, E. B., Nababan, and O.S, â€œSitompul Improving the Accuracy of K-Nearest Neighbour Using Local mean Based and Distance Weightâ€ Journal of Physics: Conf. Series 978 012047. Doi:10.1088/1742-6596/978/1/012047, 2018.

O. Campos, Zimek, A., Sander, J., Campello, R. J., MicenkovÃ¡, B., Schubert, E. and M. E. Houle, â€œOn the evaluation of unsupervised outlier detection: measures, datasets, and an empirical studyâ€ Data Mining and Knowledge Discovery, Vol. 30 no. 4, 891-927, 2016

K. Maryam, â€œA method to improve the accuracy of k-nearest Neighbour algorithmâ€ Int. J. of Computer Engineering and Information Technology Vol. 8 no. 6 90-95, 2016

Y. Zhang, Y. Xin, Q. Li, J. Ma, S. Li, L. Xiaodan and L. Weiqi, â€œEmpirical study of seven data mining algorithms on different characteristics of datasets for biomedical classification applicationsâ€ BioMed Eng OnLine. Vol. 16 no. 125, Doi.:10.1186/s12938-017-0416-x, 2017.

Mehmood, Y., Khadam, S., Hameed, K., Riaz, F., & Ghafoor, A. (2010, October). Effects of different data characteristics on classifier's performance. In 2010 6th International Conference on Emerging Technologies (ICET) (pp. 39-44). IEEE.

P. Kalaiyarasi, and J. Suguna, â€œThe Significance of Fine Tuning Parameters in Supervised Machine Learning Techniques for Diabetic Disease Predictionâ€ International Journal of Advanced Science and Technology,28(17),364-375, 2019

A.A. H. Alfeilat, A.B.A. Hassanat, O. Lasassmeh, S. A. Tarawneh, B. M, Alhasanat, E.S. H. Salman and S. B.V Prasath, â€œEffects of DM Choice on K-Nearest Neighbour Classier Performanceâ€ A Review.Big Data, Vol.7 no. 4, Pp 221â€“248. Doi: 10.1089/big.2018.0175, 2019

B., Prasath, Alfeilat, H. A. A., Hassanat, A., Lasassmeh, O., Tarawneh, A. S., Alhasanat, M. B., and H. S. E. Salman,. â€œDistance and Similarity Measures Effect on the Performance of K-Nearest Neighbour Classifier : A Reviewâ€ arXiv preprint arXiv:1708.04321, 2017

Ali N, Neagu D. and Trundle P (2019). Evaluation of Kâ€‘Nearest Neighbour Classifier Performance for Heterogeneous Data Sets. SN Applied Sciences, Pp.:1-15, Doi: 10.1007/s42452-019-1356-9

Dua, D. and C. Graff, â€˜UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]â€™. Irvine, CA: University of California, School of Information and Computer Science, 2019

P. Tamrakar, Roy S.S., Satapathy B., and Ibrahim S.P.S Integration of Lazy Learning Associative Classification with kNN Algorithm. International Conference on Vision Toward International Conference on Vision Toward Emerging Trends in Communication and Networking, pp.: 1 â€“ 4. Doi.: 10.1109/V.TECON.2019.8899415, 2019.

Wang H., Xu P., and Zhao J Improved kNN Algorithm Based on Preprocessing of Center in Smart Cities. Complexity. Article ID: 5524388. Pp.: 1â€“10. Doi.: 10.1155/2021/5524388, 2021

S. Kang â€œK-Nearest Neighbour Learning with Graph Neural Networksâ€ Mathematics, Vol. 9 no. 830, pp1â€“12, Doi.:10.3390/Math9080830, 2021

R. Kadry and O. Ismael â€˜A New Hybrid kNN Classification Approach Based on Particle Swarm Optimizationâ€™ International Journal of Advanced Computer Science and Applications, Vol. 11(11), Pp 291â€“ 296, 2020

K. Saetern and N. Eiamkanitchat â€œAn Ensemble k-nearest Neighbour with Neuro-Fuzzy Method for Classificationâ€™ Advances in Intelligent Systems and Computing. Vol. 265. Pp.: 43â€“51, 2014

Hou W. Li D, Xu C, Zhang H and Li T â€œAn Advanced k-nearest Neighbour Classification Algorithm Based on KD-Tree. In Proceedings of IEEE International Conference of Safety Produceâ€ Informatization (IICSPI), pp.902-905, Doi: 10.1109/IICSPI.2018.8690508, 2018

Salvadorâ€“Meneses J, Ruizâ€“Chavez Z and Garciaâ€“Rodriguez J Compressed kNN: K-Nearest Neighbours withData Compression. Entropy, Vol.21 no 234, Doi: 10.3390/e21030234, 2019

Md Isa E.N., Amir A, Ilyas Z.M. and Razalli S.M. â€œThe Performance Analysis of K-Nearest Neighbours (K-NN) Algorithm for Motor Imagery Classification Based on EEG Signalâ€ MATEC Web of Conferences 140, 01024,DOI: 10.1051/matecconf/201714001024, 2017

L.Y, Hu M.W. Huang, S.W. Ke and C. F. Tsai â€œThe distance function effect on k-nearest Neighbour classification for medical datasetsâ€ SpringerPlus, Vol. 5 no. 1304, Doi: 10.1186/s40064-016-2941-7, 2016

Parvin H, Alizadeh H, and Minati B A Modification on K-Nearest Neighbour Classifier, Global Journal of Computer Science and Technology, Vol. 10 no 14, pp 37 â€“ 41, 2010

A. Pulungan, M. Zarlis, and S. Suwilo, â€œAnalysis of Braycurtis, Canberra and Euclidean Distance in KNN Algorithmâ€ Journal Publication and Informatics Engineering Research, Vol. 4 no 1, pp. 74 â€“77, 2019

R. Ehsani and F. Drablos, â€œRobust DMs for kNN Classification of Cancer Dataâ€ Cancer Informatics, Vol. 19, pp.1â€“9. Doi.:10.1177/1176935120965542, 2020

P. Mulak and N. Talhar, â€œAnalysis of DMs Using K-NearestNeighbour Algorithm on KDD Dataset, International Journal of Science and Research, Vol. 4 no 7, pp. 2101-2104, 2015

Chomboon K, Chujai P, Teerarassammee P, Kerdprasop K, and N Kerdprasop, â€œAn Empirical Study of Distance Metrics for K-Nearest Neighbour Algorithm. In Proceedings of the 3rd International Conference on Industrial Application Engineering (ICIAE 2015), The Institute of Industrial Application Engineers, Japan. pp. 280 â€“285, 2015

R. Todeschini, D. Ballabio, V. Consonni and F. Grisoni â€œA New Concept of Higher-order Similarity and the Role of distance/similarity measures in local classification methodsâ€ Chemometrics and Intelligent Laboratory Systems, Vol.157 pp 50-57, 2016

Cheng D, Zhang S, Deng Z, Zhu Y and Zong M (2014). kNN Algorithm with Data-Driven k Value. In: X. Luo, J.X. Yu, and Z. Li (Eds.): ADMA, Springer International Publishing Switzerland, Pp.: 499â€“512.

M. J. Brown â€œPredicting Math Test Scores Using K-Nearest Neighbour, IEEE Integrated STEM Conference (ISEC), Princeton, New Jersey. pp.: 104â€“106. Doi:10.1109/ISECon.2017.7910221, 2017

M.C. Ma, S.W. Yang, and W. B. Cheng. â€œHow the Parameters of K-nearest Neighbour Algorithm impact on the Best Classification Accuracy: In Case of Parkinson Datasetâ€ Journal of Applied Science, Vol. 14 No 2, Pp171 â€“ 176, 2014

L. Abedallah and I. Shimshoni â€œK Nearest Neighbour using Ensemble Clusteringâ€ In: El Akkaoui Z, Mazon J-N, Vaisman A, Zimanyi E, Cuzzocrea A and Dayal U (Eds), Proceedings of 14th International Conference on:Data Warehousing and Knowledge Discovery,DaWaK, Vienna, Australia, September 3 - 6, pp. 265â€“278, 2012

L. Baoli, L. Qin and Y. Shiwen â€œAn Adaptive k Nearest Neighbour Text Categorization Strategy. ACM Transaction on Asian Language Information Processing, Vol.3 no 4, pp 215â€“226, 2004

A. G. Jivani, â€œThe Novel k nearest Neighbour Algorithmâ€ International Conference on Computer Communication and Informatics, pp. 1â€“4, Doi: 10.1109/ICCCI.2013.6466287, 2013.

S. Raschka â€œSTAT 479: Machine Learning Lecture Notes, Department of Statistics, University of Wisconsin â€“Madison. Accessed: 25 April, 2021. Available at: http://stat.wisc.edu/_sraschka/teaching/stat479-fs2018/, 2018

I. Paryudi,. What Affects K Value Selection In K-Nearest Neighbor. International Journal of Scientific & Technology Research, Vol. 8, 86-92, 2019

Oreski, D., Oreski, S., and Klicek, B. â€œEffects of dataset characteristics on the performance of feature selection techniquesâ€ Applied Soft Computing, 52, 109-119, 2017

O. Kwon and M. J. Sim â€œEffects of Data set Features on the Performances of Classification Algorithmsâ€ Expert Systems with Applications, Vol. 40. Pp.: 1847 â€“ 1857 (2013).

Y. Peng, G. Wang, G. Kou and Y. Shi, â€œAn Empirical Study of Classification Algorithm Evaluation for Financial Risk Predictionâ€ Applied Soft Computing, Vol. 11, Pp.: 2906â€“2915, 2011.

C. Lamina, G. Sturm, Kollerits, B., and F. Kronenberg, â€œVisualizing interaction effects: a proposal for presentation and interpretationâ€ Journal of clinical epidemiology, Vol. 65 no 8, pp. 855-862, 2012

Prihandoko P, Bertalya B, and Setyowati L (2020). City Health Prediction Model Using Random Forest Classification Method. 5th International Conference on Informatics and Computing (ICIC) 2020, Pp. 1-5. Doi.:10.1109/ICIC50835.2020.9288542

M. E. Ekpenyong, and U. G. Inyang, â€˜Unsupervised mining of under-resourced speech corpora for tone features classificationâ€™ 2016 International Joint Conference on Neural Networks (IJCNN), 2374-2381, 2016

U. G. Inyang and O. C. Akinyokun, â€œA hybrid knowledge discovery system for oil spillage risks pattern classificationâ€ Artificial. Intelligence Research, Vol. 3 no 4, pp 77-86, 2014

U. G. Inyang, E. E. Akpan, O. C. Akinyokun, "A Hybrid Machine Learning Approach for Flood Risk Assessment and Classification." International Journal of Computational Intelligence and Applications, Vol. 19 no 2, 2050012, 2020

U. G. Inyang, U. A. Umoh, I. C. Nnaemeka, and S. A. Robinson, â€œUnsupervised Characterization and Visualization of Students' Academic Performance Featuresâ€ Computer and Information Science, Vol. 12 no 2, pp103-116, 2019

P. R. Peres-Neto, Jackson, D. A., and K. M. Somers, â€œHow many principal components? Stopping rules for determining the number of non-trivial axes revisitedâ€ Computational Statistics and Data Analysis, Vol. 49 No. 4, pp974-997, 2005

J. C. Hayton, D. G., Allen, and V. Scarpello, â€œFactor retention decisions in exploratory factor analysis: A tutorial on parallel analysisâ€ Organizational research methods, Vol. 7 no 2, pp191-205, 2004

Caron, P. O. â€œA Monte Carlo examination of the broken-stick distribution to identify components to retain in principal component analysis. Journal of Statistical Computation and Simulation, Vol 86 no 12, pp2405-2410, 2016

M. M. Kumbure and P. Luukka, â€œA generalized fuzzy k-nearest Neighbour regression model based on Minkowski distanceâ€ Springer Granular Computing, pp1-15, Doi:10.1007/s41066-021-00288-w, 2021

DOI: http://dx.doi.org/10.18517/ijaseit.13.1.16706

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development