Hydrogen Recovery from Electroplating Wastewater Electrocoagulation Treatment

- Rusdianasari, Ahmad Taqwa, Aida Syarif, Yohandri Bow


The electroplating industry is one of the industries that contribute to liquid waste that can pollute the environment. An increase must also follow the rapid development of the electroplating industry in the wastewater treatment system. The presence of heavy metals such as chromium (Cr) and nickel (Ni) in electroplating wastewater can cause problems for humans and the environment; hence, electroplating wastewater treatment needs to be done. One form of electroplating wastewater treatment is that it can be processed as a material to obtain hydrogen gas (H2) as a new energy source. Electroplating wastewater can be processed into hydrogen gas by the electrocoagulation method using metal electrodes. In this study, the production of hydrogen gas from electroplating wastewater was carried out with a 2 (two)-step process, namely the treatment of electroplating wastewater with an electrocoagulation device and followed by the process of processing electroplating wastewater into hydrogen gas using an oxyhydrogen reactor. In the process of treating electroplating wastewater into hydrogen gas, KOH catalyst is added with varying concentrations, and the electrolysis time is 5 minutes. The purpose of adding a KOH catalyst is to obtain optimum hydrogen gas in the electroplating wastewater treatment process into hydrogen gas. The optimum KOH catalyst concentration for electroplating wastewater treatment into hydrogen gas after 5 minutes is 0.5 M, with a volume of hydrogen gas generated of 2.875 L and H2 content of 554 mg/m3.


Electroplating wastewater; electrocoagulation; hydrogen recovery; treatment

Full Text:



A. Tahreen, M. S. Jami, and F. Ali, “Role of electrocoagulation in wastewater treatment: A developmental review,†J. Water Process Eng., vol. 37, no. June, p. 101440, 2020, doi: 10.1016/j.jwpe.2020.101440.

Rusdianasari, A. Taqwa, Jaksen, and A. Syakdani, “Treatment optimization of electrocoagulation (EC) in purifying palm oil mill effluents (POMEs),†J. Eng. Technol. Sci., vol. 49, no. 5, pp. 604–617, 2017, doi: 10.5614/j.eng.technol.sci.2017.49.5.4.

A. Meidinariasty, Rusdianasari, Y. Bow, I. Rusnadi, and A. Lutfi Fuadi, “Treatment of Leachate from Garbage using Electrocoagulation Type MP-P (MonoPolar-Paralel) Methode,†J. Phys. Conf. Ser., vol. 1167, no. 1, 2019, doi: 10.1088/1742-6596/1167/1/012054.

Rusdianasari, Y. Bow, and T. Dewi, “Peat Water Treatment by Electrocoagulation using Aluminium Electrodes,†IOP Conf. Ser. Earth Environ. Sci., vol. 258, no. 1, 2019, doi: 10.1088/1755-1315/258/1/012013.

D. Syam Babu, T. S. Anantha Singh, P. V. Nidheesh, and M. Suresh Kumar, “Industrial wastewater treatment by electrocoagulation process,†Sep. Sci. Technol., vol. 55, no. 17, pp. 3195–3227, 2020, doi: 10.1080/01496395.2019.1671866.

A. Shahedi, A. K. Darban, F. Taghipour, and A. Jamshidi-Zanjani, “A review on industrial wastewater treatment via electrocoagulation processes,†Curr. Opin. Electrochem., vol. 22, no. June, pp. 154–169, 2020, doi: 10.1016/j.coelec.2020.05.009.

Rusdianasari, A. Meidinariasty, and I. Purnamasari, “Level decreasing kinetics model of heavy metal contents in the coal stockpile wastewater with electrocoagulation,†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 5, no. 6, pp. 387–391, 2015, doi: 10.18517/ijaseit.5.6.593.

F. Sher, K. Hanif, S. Z. Iqbal, and M. Imran, “Implications of advanced wastewater treatment: Electrocoagulation and electroflocculation of effluent discharged from a wastewater treatment plant,†J. Water Process Eng., vol. 33, no. August 2019, 2020, doi: 10.1016/j.jwpe.2019.101101.

C. J. Nawarkar and V. D. Salkar, “Solar powered Electrocoagulation system for municipal wastewater treatment,†Fuel, vol. 237, no. September 2018, pp. 222–226, 2019, doi: 10.1016/j.fuel.2018.09.140.

Rusdianasari, A. Taqwa, Jaksen, and A. Syakdani, “Treatment of landfill leachate by electrocoagulation using aluminum electrodes,†MATEC Web Conf., vol. 101, 2017, doi: 10.1051/matecconf/201710102010.

J. N. Hakizimana et al., “Electrocoagulation process in water treatment: A review of electrocoagulation modeling approaches,†Desalination, vol. 404, pp. 1–21, 2017, doi: 10.1016/j.desal.2016.10.011.

Rusdianasari, Jaksen, A. Taqwa, and Y. Wijarnako, “Effectiveness of Electrocoagulation Method in Processing Integrated Wastewater Using Aluminum and Stainless Steel Electrodes,†J. Phys. Conf. Ser., vol. 1167, no. 1, 2019, doi: 10.1088/1742-6596/1167/1/012040.

D. Ghernaout, “Electrocoagulation Process: Achievements and Green Perspectives,†Colloid Surf. Sci., vol. 3, no. 1, p. 1, 2018, doi: 10.11648/j.css.20180301.11.

P. I. Omwene, M. Kobya, and O. T. Can, “Phosphorus removal from domestic wastewater in electrocoagulation reactor using aluminium and iron plate hybrid anodes,†Ecol. Eng., vol. 123, no. September, pp. 65–73, 2018, doi: 10.1016/j.ecoleng.2018.08.025.

K. S. Hashim, A. Shaw, R. Al Khaddar, M. Ortoneda Pedrola, and D. Phipps, “Defluoridation of drinking water using a new flow column-electrocoagulation reactor (FCER) - Experimental, statistical, and economic approach,†J. Environ. Manage., vol. 197, pp. 80–88, 2017, doi: 10.1016/j.jenvman.2017.03.048.

Rusdianasari, Jaksen, A. Taqwa, and Y. Wijarnako, “Smart Sensor for Monitoring Integrated Wastewater,†IOP Conf. Ser. Earth Environ. Sci., vol. 347, no. 1, 2019, doi: 10.1088/1755-1315/347/1/012061.

X. Cai et al., “Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant,†Ecotoxicol. Environ. Saf., vol. 181, no. February, pp. 472–480, 2019, doi: 10.1016/j.ecoenv.2019.06.036.

D. Sharma, P. K. Chaudhari, S. Dubey, and A. K. Prajapati, “Electrocoagulation Treatment of Electroplating Wastewater: A Review,†J. Environ. Eng., vol. 146, no. 10, p. 03120009, 2020, doi: 10.1061/(asce)ee.1943-7870.0001790.

D. Sharma, P. K. Chaudhari, and A. K. Prajapati, “Removal of chromium (VI) and lead from electroplating effluent using electrocoagulation,†Sep. Sci. Technol., vol. 55, no. 2, pp. 321–331, 2020, doi: 10.1080/01496395.2018.1563157.

S. Ayub et al., “Removal of heavy metals (Cr, cu, and zn) from electroplating wastewater by electrocoagulation and adsorption processes,†Desalin. Water Treat., vol. 179, pp. 263–271, 2020, doi: 10.5004/dwt.2020.25010.

X. Kong et al., “A novel technique of COD removal from electroplating wastewater by Fenton—alternating current electrocoagulation,†Environ. Sci. Pollut. Res., vol. 27, no. 13, pp. 15198–15210, 2020, doi: 10.1007/s11356-020-07804-6.

D. Irtas, Y. Bow, and Rusdianasari, “The Effect of Electric Current on the Production of Brown’s Gas using Hydrogen Fuel Generator with Seawater Electrolytes,†IOP Conf. Ser. Earth Environ. Sci., vol. 709, no. 1, 2021, doi: 10.1088/1755-1315/709/1/012001.

R. Ploetz, Rusdianasari, and Eviliana, “Renewable Energy: Advantages and Disadvantages,†Forum Res. Sci. Technol. (FIRST). Politek. Negeri Sriwijaya., pp. 1–4, 2016.

Rusdianasari, Y. Bow, and T. Dewi, “HHO Gas Generation in Hydrogen Generator using Electrolysis,†IOP Conf. Ser. Earth Environ. Sci., vol. 258, no. 1, 2019, doi: 10.1088/1755-1315/258/1/012007.

Rusdianasari, Y. Bow, T. Dewi, and P. Risma, “Hydrogen Gas Production Using Water Electrolyzer as Hydrogen Power,†ICECOS 2019 - 3rd Int. Conf. Electr. Eng. Comput. Sci. Proceeding, no. October, pp. 127–131, 2019, doi: 10.1109/ICECOS47637.2019.8984438.

M. H. Sellami and K. Loudiyi, “Electrolytes behavior during hydrogen production by solar energy,†Renew. Sustain. Energy Rev., vol. 70, no. November 2015, pp. 1331–1335, 2017, doi: 10.1016/j.rser.2016.12.034.

A. Syakdani, Y. Bow, Rusdianasari, and M. Taufik, “Analysis of Cooler Performance in Air Supply Feed for Nitrogen Production Process Using Pressure Swing Adsorption (PSA) Method,†J. Phys. Conf. Ser., vol. 1167, no. 1, 2019, doi: 10.1088/1742-6596/1167/1/012055.

I. M. H, R. M. N, and E. B. A, “Hydrogen Production Using Mediterranean Sea Water of Benghazi Shore and Synthetic Sea Water Electrolysis,†Acad. J. Chem. ISSN, vol. x, No. x, no. 1, pp. xx–xx, 2017.

IRENA, Green Hydrogen: A guide to policy making. Abu Dhabi, 2020.

M. M. El-Kassaby, Y. A. Eldrainy, M. E. Khidr, and K. I. Khidr, “Effect of hydroxy (HHO) gas addition on gasoline engine performance and emiss ions,†Alexandria Eng. J., vol. 55, no. 1, pp. 243–251, 2016, doi: 10.1016/j.aej.2015.10.016.

G. D. O’Neil, C. D. Christian, D. E. Brown, and D. V. Esposito, “Hydrogen Production with a Simple and Scalable Membraneless Electrolyzer,†J. Electrochem. Soc., vol. 163, no. 11, pp. F3012–F3019, 2016, doi: 10.1149/2.0021611jes.

S. H. Susilo and Z. Jannah, “Effect of Electrodes , Electric Currents , And Nahco 3 Concentration Against Hho Pressure Generator,†Res. Inven. Int. J. Eng. Sci., vol. 10, no. 4, pp. 4–9, 2020.

I. Amelia, D. Rohendi, A. Rachmat, and N. Syarif, “Hydrogen adsorption / desorption on lithium alanat catalyzed by Ni / C for sustainable hydrogen storage,†ndonesian J. Fundam. Appl. Chem., vol. 6, no. 2, pp. 59–63, 2021, doi: 10.24845/ijfac.v6.i2.59.

P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,†Renew. Sustain. Energy Rev., vol. 67, pp. 597–611, 2017, doi: 10.1016/j.rser.2016.09.044.

F. Dawood, M. Anda, and G. M. Shafiullah, “Hydrogen production for energy: An overview,†Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 3847–3869, 2020, doi: 10.1016/j.ijhydene.2019.12.059.

M. Kayfeci, A. Keçebaş, and M. Bayat, Hydrogen production. 2019.

J. Chi and H. Yu, “Water electrolysis based on renewable energy for hydrogen production,†Cuihua Xuebao/Chinese J. Catal., vol. 39, no. 3, pp. 390–394, 2018, doi: 10.1016/S1872-2067(17)62949-8.

S. Shiva Kumar and V. Himabindu, “Hydrogen production by PEM water electrolysis – A review,†Mater. Sci. Energy Technol., vol. 2, no. 3, pp. 442–454, 2019, doi: 10.1016/j.mset.2019.03.002.

DOI: http://dx.doi.org/10.18517/ijaseit.13.2.16667


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development