Mapping Climate Change Vulnerability of the Java Sea Ecosystem

Alan F. Koropitan, Vincentius Siregar


This present study aims to investigate climate change trends in the Java Sea and integrate these trends with the distribution of the lower trophic level of marine ecosystem parameters and the distribution of coastal ecosystems into a climate change vulnerability map using data products of wind, rainfall, sea surface temperature (SST), satellite imagery of Landsat TM and a coupled hydrodynamic-biogeochemical model output. Climate change vulnerability mapping was conducted using a Geographic Information System (GIS), with a vulnerability equation from IPCC. This study shows that the high vulnerability is located in the southern coast of Kalimantan, Jakarta Bay, Semarang waters, and Madura Strait because of riverine inputs from human activities in the land and possible future worse conditions due to the positive rainfall trends in those regions. The low vulnerability is found in the northwestern and southeastern parts of the Java Sea associated with the negative trends of rainfall and SST. In general, the moderate vulnerability covers almost the entire Java Sea. This study suggests strengthening the coastal ecosystem through protection and rehabilitation in the future to enhance adaptive capacity. In addition, the organic and inorganic riverine inputs have to minimize, related to the positive trend of rainfall in the future, particularly those regions with high vulnerability. Integration of the spatial land model, the ocean model, and climate forcing are expected to improve our understandings of climate change vulnerability, which is relevant for climate adaptation action plans.


The Java Sea; climate change; vulnerability map; GIS.

Full Text:



IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp. [Online]. Available:

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press. In Press. [Online]. Available:

Iskandar, I., Mardiansyah, W., Lestari, D.O. et al. What did determine the warming trend in the Indonesian sea?. Prog Earth Planet Sci 7, 20 (2020).

Thomas MK, Kremer CT, Klausmeier CA, Litchman E (2012) A global pattern of thermal adaptation in marine phytoplankton. Science 338(6110):1085–1088.

Boyd, P. W., Sundby, S. and Pörtner, H. O. (2014): Cross-chapter box on net primary production in the ocean. V. Barros, D. Dokken , K. Mach , M. Mastrandrea , T. Bilir , M. Chatterjee , K. Ebi , Y. Estrada , R. Genova, B. Girma , E. Kissel , A. Levy , S. MacCracken , P. Mastrandrea and L. White (editors), Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel of Climate Change, Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press, ISBN: 9781107641655. [Online]. Available:

Chassot, E., Bonhommeau, S., Dulvy, N.K., Mélin, F., Watson, R., Gascuel, D. and Le Pape, O. (2010), Global marine primary production constrains fisheries catches. Ecology Letters, 13: 495-505.

Parsons T. R., Lalli C. M. 1997. Biological Oceanography: An Introduction (Second Edition). Vancouver (Ca): University of British Columbia. ISBN 0 7506 3384 0. [Online]. Available:

Putra, E., J. Lumban-Gaol, V. P. Siregar. 2012. Relationship Chlorophyll-a Concentration and Sea Surface Temperature with Primary Pelagic Fish Catches in Java Sea from Modis Satellite Images. Jurnal Teknologi Perikanan dan Kelautan. Vol. 3. No. 2: 1-10.

Sadhotomo, B. and S. B. Atmaja. 2012. A Synthesis on Small Pelagic Fisheries Assessment in the Java Sea. 2012. J. Lit. Perikan. Ind. Vol.18 No. 4: 221-232. [Online]. Available:

Atmaja, S.B., D. Nugroho, and M. Natsir1. 2012. Radical response on overcapacity of Pekalongan semi industrial purse seiner in the Java Sea. J. Lit. Perikan. Ind. Vol.17 No. 2: 115-123. [Online]. Available:

Baum, G., I. Kusumanti, A. Breckwoldt, S. C.A. Ferse, M. Glaser, Dwiyitno, L. Adrianto, S. van der Wulp, A. Kunzmann. 2016. Under pressure: Investigating marine resource-based livelihoods in Jakarta Bay and the Thousand Islands, Marine Pollution Bulletin, Volume 110, Issue 2, 778-789.

Kunzmann, A., Arifin, Z., and Baum, G. (2018). Pollution of Coastal Areas of Jakarta Bay: Water Quality and Biological Responses. Marine Research in Indonesia, 43(1), 37–51.

L. Dsikowitzky, S.A. van der Wulp, Dwiyitno, F. Ariyani, K.J. Hesse, A. Damar, and J. Schwarzbauer. 2018. Transport of pollution from the megacity Jakarta into the ocean: Insights from organic pollutant mass fluxes along the Ciliwung River. Estuarine, Coastal and Shelf Science, Vol. 215: 219-228.

D. Adyasari, M. A. Pratama, N. A. Teguh, A. Sabdaningsih, M. A. Kusumaningtyas, N. Dimova. 2021. Anthropogenic impact on Indonesian coastal water and ecosystems: Current status and future opportunities. Marine Pollution Bulletin, Vol. 171, 112689.

Koropitan, A. F. and Ikeda, M. 2016. Influences of physical processes and anthropogenic influx on biogeochemical cycle in the Java Sea: numerical model experiment. Procedia Environmental Sciences, Vol. 33, 532-552.

Lyzenga, D.R. 1978. Passive remote sensing techniques for mapping water depth and bottom features. Applied Optics 17: 379-383. [Online]. Available:

E. P. Green, A. J. Edwards, and P. J. Mumby, “Mapping bathymetry”, in Remote Sensing Handbook for Tropical Coastal Management. Coastal Management Sourcebooks, 3. Edwards, A. J. (ed.). Paris: UNESCO Publishing, 2000, pp. 219-233.

Preston, B. L., Smith, T. F. Brooke, C., Gorddard, R., Maesham, T. G., Withycombe, G., McInnes, K., Abbs, D., Beveridge, D., and Morrison, C. 2008. Mapping Climate Change Vulnerability in the Sydney Coastal Councils Group. Prepared for the Sydney Coastal Councils Group. [Online]. Available: Accessed on: June 1, 2019.

IPCC. 2001. Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J. T., Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 881pp. [Online]. Available:

Varela, R., Álvarez, I., Santos, F. et al. Has upwelling strengthened along worldwide coasts over 1982-2010?. Sci Rep 5, 10016 (2015).

Hassim, M. E. E., & Timbal, B. (2019). Observed Rainfall Trends over Singapore and the Maritime Continent from the Perspective of Regional-Scale Weather Regimes, Journal of Applied Meteorology and Climatology, 58(2), 365-384.

A. R. As-syakur, T. Tanaka, T. Osawa, and M. S. Mahendra. (2013). Indonesian rainfall variability observation using TRMM multi-satellite data, International Journal of Remote Sensing, 34:21, 7723-7738.

Kurniadi, A, Weller, E, Min, S-K, Seong, M-G. Independent ENSO and IOD impacts on rainfall extremes over Indonesia. Int J Climatol. 2021; 41: 3640– 3656.

Susilo, E. & Suniada K. I. (2015). The suitability of the predicted fishing ground maps (PPDPI) and micronecton biomass. Presented at The 1st International Symposium on Marine and Fisheries Research. [Online]. Available:

Wijopriono. 2007. Analyzing Density and Environmental Factors of the Java Sea Pelagic Fish using Catch, Remote Sensing, and Hydro Acoustic Data. lnd. Fish Res. J. Vol. 13, No. 2: 63-8.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development