Horizontal and Vertical Geometric Accuracy of Agisoft Photoscan and Pix4D Mapper Softwares at Kebun Raya Universitas Mulawarman in Samarinda, East Kalimantan, Indonesia

Sri Endayani, Ronggo Sadono, Ambar Kusumandari, - Hartono, M. Baiquni


The advent of unmanned aerial vehicles has improved aerial photography, which is now aided by computer software for data acquisition and processing. These developments allow for accurate aerial photographs of Kebun Raya Universitas Mulamarwan Samarinda (KRUS) for managerial purposes. This study aims to compare the accuracy of horizontal and vertical geometry with Agisoft Photoscan (AP) and Pix4D Mapper (PM) software. The materials consisted of 150 aerial photographs of KRUS with eight ground control points (GCP) and one internal control point (ICP). Data were obtained from nine flight paths with AP and PM software linked to GCP and ICP. These data were processed and compared to manual measurements using linear error (LE) 90 and circular error (CE) 90 criteria. The commission omission equation was used for the object accuracy test on orthophoto. The vertical geometry accuracy test was carried out using the criteria of root mean square error (RMSE) and LE90 values on the digital elevation model. In comparison, the horizontal geometry accuracy test was performed by using the obtained orthophoto based on RMSE and CE90 criteria. The result demonstrated that the horizontal geometry accuracy for AP was higher than PM, indicated by lower RMSE and CE90 values, which were 0.091 versus 0.148 and 0.139 versus 0.224 for AP and PM, respectively. The vertical geometry accuracy was similar, with lower RMSE and LE90 values of 0.169 versus 0.309 and LE90 0.279 versus 0.224 for AP and PM, respectively. Furthermore, AP is a potential tool for KRUS spatial mapping.


Ground and internal control point; digital elevation model; orthophoto; linear and circular error; commission omission equation.

Full Text:



H. A. Akpo et al., “Trees , Forests and People Accuracy of tree stem circumference estimation using close range photogrammetry : Does point-based stem disk thickness matter ?,†Trees, For. People, vol. 2, no. July, p. 100019, 2020, doi: 10.1016/j.tfp.2020.100019.

V. Č. Aksamitauskas, “The surface modelling based on UAV Photogrammetry and qualitative estimation,†MEASUREMENT, 2015, doi: 10.1016/j.measurement.2015.04.018.

A. R. Bankert, E. H. Strasser, C. G. Burch, and M. D. Correll, “An open-source approach to characterizing Chihuahuan Desert vegetation communities using object-based image analysis,†J. Arid Environ., no. September, p. 104383, 2020, doi: 10.1016/j.jaridenv.2020.104383.

J. Enciso et al., “Validation of agronomic UAV and fi eld measurements for tomato varieties,†Comput. Electron. Agric., vol. 158, no. October 2018, pp. 278–283, 2019, doi: 10.1016/j.compag.2019.02.011.

R. Freeland, B. Allred, N. Eash, L. Martinez, and D. Wishart, “Agricultural drainage tile surveying using an unmanned aircraft vehicle paired with Real-Time Kinematic positioning — A case study,†Comput. Electron. Agric., vol. 165, no. July, p. 104946, 2019, doi: 10.1016/j.compag.2019.104946.

F. Giannetti, G. Chirici, T. Gobakken, E. Næsset, D. Travaglini, and S. Puliti, “Remote Sensing of Environment A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data,†Remote Sens. Environ., vol. 213, no. June 2017, pp. 195–205, 2018, doi: 10.1016/j.rse.2018.05.016.

J. A. Gonçalves and R. Henriques, “ISPRS Journal of Photogrammetry and Remote Sensing UAV photogrammetry for topographic monitoring of coastal areas,†vol. 104, pp. 101–111, 2015, doi: 10.1016/j.isprsjprs.2015.02.009.

C. A. V. J, J. D. R. D, and C. A. R. R, “Jo ur l P re of,†J. Struct. Geol., p. 104214, 2020, doi: 10.1016/j.jsg.2020.104214.

X. Jin, S. Liu, F. Baret, M. Hemerlé, and A. Comar, “Remote Sensing of Environment Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery,†Remote Sens. Environ., vol. 198, pp. 105–114, 2017, doi: 10.1016/j.rse.2017.06.007.

M. Moussa, A. Degré, C. Debouche, and J. Lisein, “Geomorphology The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds,†Geomorphology, vol. 214, pp. 339–355, 2014, doi: 10.1016/j.geomorph.2014.02.016.

J. Ramon, A. Reyes-menendez, and P. Palos-sanchez, “Mapping multispectral Digital Images using a Cloud Computing software : applications from UAV images,†Heliyon, no. January, p. e01277, 2019, doi: 10.1016/j.heliyon.2019.e01277.

M. Rusnák, J. Sládek, A. Kidová, and M. Lehotský, “Template for high-resolution river landscape mapping using UAV technology,†measurement, 2017, doi: 10.1016/j.measurement.2017.10.023.

S. Sankaran, L. R. Khot, R. Sinha, and J. J. Quiro, “High resolution aerial photogrammetry based 3D mapping of fruit crop canopies for precision inputs management,†no. xxxx, pp. 1–13, 2021, doi: 10.1016/j.inpa.2021.01.006.

A. Shirzadifar, M. Maharlooei, S. G. Bajwa, P. G. Oduor, and J. F. Nowatzki, “ScienceDirect Mapping crop stand count and planting uniformity using high resolution imagery in a maize crop,†Biosyst. Eng., vol. 200, pp. 377–390, 2020, doi: 10.1016/j.biosystemseng.2020.10.013.

M. Syifa, P. R. Kadavi, S. J. Park, and C. Lee, “A Survey of Sediment Fineness and Moisture Content in the Soyang Lake Floodplain Using GPS Data,†Engineering, vol. 7, no. 2, pp. 252–259, 2021, doi: 10.1016/j.eng.2020.12.011.

S. N. Kuiry, “Assessing the accuracy of high-resolution topographic data generated using freely available packages based on SfM-MVS approach,†measurement, 2018, doi: 10.1016/j.measurement.2018.04.043.

J. X. Leon, C. M. Roelfsema, M. I. Saunders, and S. R. Phinn, “Geomorphology Measuring coral reef terrain roughness using ‘ Structure-from-Motion ’ close-range photogrammetry,†Geomorphology, vol. 242, pp. 21–28, 2015, doi: 10.1016/j.geomorph.2015.01.030.

C. Bayliss, A. A. Juan, C. S. M. Currie, and J. Panadero, “Jou rna,†Appl. Soft Comput. J., p. 106280, 2020, doi: 10.1016/j.asoc.2020.106280.

B. Bera, D. Chattaraj, and A. K. Das, “Jou rna,†Comput. Commun., 2020, doi: 10.1016/j.comcom.2020.02.011.

A. Castellini, D. Bloisi, J. Blum, F. Masillo, and A. Farinelli, “Multivariate sensor signals collected by aquatic drones involved in water monitoring : A complete dataset,†Data Br., vol. 30, p. 105436, 2020, doi: 10.1016/j.dib.2020.105436.

A. Jolfaei, “Jou rna lP pro of,†Comput. Commun., 2020, doi: 10.1016/j.comcom.2020.02.055.

R. Kellermann, T. Biehle, and L. Fischer, “Transportation Research Interdisciplinary Perspectives Drones for parcel and passenger transportation : A literature review ☆,†Transp. Res. Interdiscip. Perspect., no. xxxx, p. 100088, 2019, doi: 10.1016/j.trip.2019.100088.

S. H. Kim, “Journal of Air Transport Management Choice model based analysis of consumer preference for drone delivery service,†J. Air Transp. Manag., vol. 84, no. September 2019, p. 101785, 2020, doi: 10.1016/j.jairtraman.2020.101785.

L. Di, P. Pugliese, F. Guerriero, and G. Macrina, “ScienceDirect Using drones for parcels delivery process Using parcels delivery process Using drones drones for for parcels delivery,†Procedia Manuf., vol. 42, pp. 488–497, 2019, doi: 10.1016/j.promfg.2020.02.043.

P. L. Gonzalez-r, D. Canca, J. L. Andrade-pineda, M. Calle, and J. M. Leon-blanco, “Truck-drone team logistics : A heuristic approach to multi-drop route planning,†Transp. Res. Part C, vol. 114, no. July 2019, pp. 657–680, 2020, doi: 10.1016/j.trc.2020.02.030.

T. Kirschstein, “Comparison of energy demands of drone-based and ground-based parcel delivery services,†Transp. Res. Part D, vol. 78, p. 102209, 2020, doi: 10.1016/j.trd.2019.102209.

H. Lo et al., “Field test of beach litter assessment by commercial aerial drone,†Mar. Pollut. Bull., vol. 151, no. November 2019, p. 110823, 2020, doi: 10.1016/j.marpolbul.2019.110823.

X. Lu, X. Liu, Y. Li, Y. Zhang, and H. Zuo, “Simulations of airborne collisions between drones and an aircraft windshield,†Aerosp. Sci. Technol., vol. 1, p. 105713, 2020, doi: 10.1016/j.ast.2020.105713.

M. Michels, C. Von Hobe, and O. Musshoff, “A trans-theoretical model for the adoption of drones by large-scale German farmers,†J. Rural Stud., no. October 2017, pp. 1–9, 2020, doi: 10.1016/j.jrurstud.2020.01.005.

A. Mirzaeinia, M. Hassanalian, K. Lee, and M. Mirzaeinia, “Energy conservation of V-shaped swarming fixed-wing drones through position reconfiguration,†Aerosp. Sci. Technol., vol. 94, p. 105398, 2019, doi: 10.1016/j.ast.2019.105398.

B. Mishra, D. Garg, P. Narang, and V. Mishra, “Jou rna lP pro of,†Comput. Commun., 2020, doi: 10.1016/j.comcom.2020.03.012.

S. Poikonen, B. Golden, and B. Golden, “Multi-visit Drone Routing Problem,†Comput. Oper. Res., p. 104802, 2019, doi: 10.1016/j.cor.2019.104802.

M. H. D. Saria and M. F. Al-sa, “Data in brief DroneRF dataset : A dataset of drones for RF- based detection , classi fi cation and identi fi cation,†vol. 26, 2019, doi: 10.1016/j.dib.2019.104313.

S. Sciancalepore et al., “PiNcH : an Effective , Efficient , and Robust Solution to Drone Detection via Network Traffic Analysis,†Comput. Networks, p. 107044, 2019, doi: 10.1016/j.comnet.2019.107044.

M. Unal, E. Bostanci, and E. Sertalp, “Distant Augmented Reality : Bringing a new dimension to user experience using drones,†Digit. Appl. Archaeol. Cult. Herit., p. e00140, 2020, doi: 10.1016/j.daach.2020.e00140.

J. Yaacoub and O. Salman, “Security Analysis of Drones Systems : Attacks , Limitations , and Recommendations,†Internet of Things, p. 100218, 2020, doi: 10.1016/j.iot.2020.100218.

A. Yudo, G. Jati, A. Octavian, and W. Jatmiko, “Switching target communication strategy for optimizing multiple pursuer drones performance in immobilizing Kamikaze multiple evader drones,†ICT Express, no. xxxx, 2020, doi: 10.1016/j.icte.2020.03.007.

X. Zhu, T. J. Pasch, and A. Bergstrom, “Technology in Society Understanding the structure of risk belief systems concerning drone delivery : A network analysis,†Technol. Soc., vol. 62, no. April, p. 101262, 2020, doi: 10.1016/j.techsoc.2020.101262.

A. Triantafyllou et al., “3-D digital outcrop model for analysis of brittle deformation and lithological mapping ( Lorette cave , Belgium ),†J. Struct. Geol., vol. 120, no. July 2018, pp. 55–66, 2019, doi: 10.1016/j.jsg.2019.01.001.

P. Zhu, G. Zhang, B. Zhang, and H. Wang, “Catena Variation in soil surface roughness under di ff erent land uses in a small watershed on the Loess Plateau , China,†Catena, vol. 188, no. September 2019, p. 104465, 2020, doi: 10.1016/j.catena.2020.104465.

DOI: http://dx.doi.org/10.18517/ijaseit.12.5.16362


  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development