Systematic Mapping on the Creation of Learning Activities Using Virtual Reality

Juan Pablo Valencia-Rosada, Santiago Andrés Aragón-Guzmán, Sandra Milena Roa-Martinez, Hendrys Tobar-Muñoz

Abstract


Virtual Reality (VR) is a technology well equipped to enhance learning processes. The development of Learning Activities with Virtual Reality (LAVR), however, remains a complex process. This makes it a somewhat costly process, the full cost of which can be reduced by using a set of tools (framework) for implementing LAVR, involving an educational model with which to guide the developer. In this paper, we review scientific articles that focus on learning processes that use immersive technologies, seeking to identify frameworks and guidelines for the creation of LAVR. To do this, a systematic mapping of the scientific production in ScienceDirect was carried out, observing those studies from 2015 onward that involved topics including virtual reality, learning activities, Bloom taxonomy, and the state of the practice in which they are found. The results show that no studies are to be found in the literature on frameworks, guidelines, or recommendations either for the creation of LAVR or for the production of frameworks that facilitate this process using the Bloom taxonomy. However, studies can be found that guide the creation of LAVR, and these could be used as the basis for creating a framework. Based on the review, it could be concluded that VR favors learning processes at the various levels of education in a range of areas but that there is a paucity of directives able to facilitate the creation, adaptation, and incorporation of LAVR. This, therefore, constitutes a field of interest that merits further research.

Keywords


Virtual reality; learning activity; working framework; Bloom taxonomy; systematic mapping.

Full Text:

PDF

References


X. Wei, D. Weng, Y. Liu, and Y. Wang, “Teaching based on augmented reality for a technical creative design course,” Comput. Educ., vol. 81, pp. 221–234, Feb. 2015, DOI: 10.1016/j.compedu.2014.10.017.

M. Brown et al., 2020 EDUCAUSE Horizon Report. Teaching and Learning Edition. 2020.

A. Martín-Barrio, J. J. Roldán, S. Terrile, J. del Cerro, and A. Barrientos, “Application of immersive technologies and natural language to hyper-redundant robot teleoperation,” Virtual Real., vol. 24, no. 3, 2019, DOI: 10.1007/s10055-019-00414-9.

S. de Freitas and T. Neumann, “The use of ‘exploratory learning’ for supporting immersive learning in virtual environments,” Comput. Educ., vol. 52, no. 2, pp. 343–352, 2009, DOI: 10.1016/j.compedu.2008.09.010.

Z. Feng, V. A. González, R. Amor, R. Lovreglio, and G. Cabrera-Guerrero, “Immersive virtual reality serious games for evacuation training and research: A systematic literature review,” Comput. Educ., vol. 127, pp. 252–266, Dec. 2018, DOI: 10.1016/j.compedu.2018.09.002.

M. Seifan, N. Robertson, and A. Berenjian, “Use of virtual learning to increase key laboratory skills and essential non-cognitive characteristics,” Educ. Chem. Eng., vol. 33, pp. 66–75, 2020, DOI: 10.1016/j.ece.2020.07.006.

J. Martín-Gutiérrez, C. E. Mora, B. Añorbe-Díaz, and A. González-Marrero, “Virtual technologies trends in education,” Eurasia J. Math. Sci. Technol. Educ., vol. 13, no. 2, pp. 469–486, 2017, DOI: 10.12973/eurasia.2017.00626a.

N. Yadav, D. S. Rajpoot, and S. K. Dhakad, “LARAVEL: A PHP Framework for E-Commerce Website,” Proc. IEEE Int. Conf. Image Inf. Process., vol. 2019-November, pp. 503–508, 2019, DOI: 10.1109/ICIIP47207.2019.8985771.

L. O. Wilson, “Anderson and Krathwohl Bloom’s Taxonomy Revised Understanding the New Version of Bloom’s Taxonomy,” Second Princ., pp. 1–8, 2016, [Online]. Available: https://quincycollege.edu/content/uploads/Anderson-and-Krathwohl_Revised-Blooms-Taxonomy.pdf%0Ahttps://thesecondprinciple.com/teaching-essentials/beyond-bloom-cognitive-taxonomy-revised/%0Ahttp://thesecondprinciple.com/teaching-essentials/beyond-bloom-cog.

H. S. Hsiao and J. C. Chen, “Using a gesture interactive game-based learning approach to improve preschool children’s learning performance and motor skills,” Comput. Educ., vol. 95, pp. 151–162, Apr. 2016, DOI: 10.1016/j.compedu.2016.01.005.

H. Yago, J. Clemente, D. Rodriguez, and P. Fernandez-de-Cordoba, “ON-SMMILE: Ontology Network-based Student Model for MultIple Learning Environments,” Data Knowl. Eng., vol. 115, pp. 48–67, May 2018, DOI: 10.1016/j.datak.2018.02.002.

M. Minović, M. Milovanović, U. Šošević, and M. Á. Conde González, “Visualisation of student learning model in serious games,” Comput. Human Behav., vol. 47, pp. 98–107, 2015, DOI: 10.1016/j.chb.2014.09.005.

D. Antonelli et al., “Tiphys: An Open Networked Platform for Higher Education on Industry 4.0,” in Procedia CIRP, 2019, vol. 79, pp. 706–711, DOI: 10.1016/j.procir.2019.02.128.

R. Wang, R. Lowe, S. Newton, and T. Kocaturk, “Task complexity and learning styles in situated virtual learning environments for construction higher education,” Autom. Constr., vol. 113, p. 103148, May 2020, DOI: 10.1016/j.autcon.2020.103148.

S. L. Farra, E. T. Miller, and E. Hodgson, “Virtual reality disaster training: Translation to practice,” Nurse Educ. Pract., vol. 15, no. 1, pp. 53–57, Jan. 2015, DOI: 10.1016/j.nepr.2013.08.017.

J. Pan, X. Su, and Z. Zhou, “An Alternate Reality Game for Facility Resilience (ARGFR),” in Procedia Engineering, Jan. 2015, vol. 118, pp. 296–303, DOI: 10.1016/j.proeng.2015.08.430.

D. Grajewski, F. Górski, A. Hamrol, and P. Zawadzki, “Immersive and Haptic Educational Simulations of Assembly Workplace Conditions,” in Procedia Computer Science, Jan. 2015, vol. 75, pp. 359–368, DOI: 10.1016/j.procs.2015.12.258.

J. Wang and R. Lindeman, “Coordinated hybrid virtual environments: Seamless interaction contexts for effective virtual reality,” Comput. Graph., vol. 48, pp. 71–83, May 2015, DOI: 10.1016/j.cag.2015.02.007.

S. Farra et al., “Storyboard Development for Virtual Reality Simulation,” Clin. Simul. Nurs., vol. 12, no. 9, pp. 392–399, Sep. 2016, DOI: 10.1016/j.ecns.2016.04.002.

C. M. Nakano et al., “IBET: Immersive visualization of biological electron-transfer dynamics,” J. Mol. Graph. Model., vol. 65, pp. 94–99, Apr. 2016, DOI: 10.1016/j.jmgm.2016.02.009.

J. A. Frank and V. Kapila, “Mixed-reality learning environments: Integrating mobile interfaces with laboratory test-beds,” Comput. Educ., vol. 110, pp. 88–104, Jul. 2017, DOI: 10.1016/j.compedu.2017.02.009.

S. Tretsiakova-McNally, E. Maranne, F. Verbecke, and V. Molkov, “Mixed e-learning and virtual reality pedagogical approach for innovative hydrogen safety training of first responders,” Int. J. Hydrogen Energy, vol. 42, no. 11, pp. 7504–7512, Mar. 2017, DOI: 10.1016/j.ijhydene.2016.03.175.

L. Hou, H. L. Chi, W. Tarng, J. Chai, K. Panuwatwanich, and X. Wang, “A framework of innovative learning for skill development in complex operational tasks,” Autom. Constr., vol. 83, pp. 29–40, Nov. 2017, DOI: 10.1016/j.autcon.2017.07.001.

M. Galaup, N. Muller, C. Pons Lelardeux, D. Panzoli, J. P. Jessel, and P. Lagarrigue, “Design of learning environments for Mechanical Engineering,” Procedia Manuf., vol. 13, pp. 1440–1446, Jan. 2017, DOI: 10.1016/j.promfg.2017.09.126.

A. W. de Vries, G. Faber, I. Jonkers, J. H. Van Dieen, and S. M. P. Verschueren, “Virtual reality balance training for elderly: Similar skiing games elicit different challenges in balance training,” Gait Posture, vol. 59, pp. 111–116, Jan. 2018, DOI: 10.1016/j.gaitpost.2017.10.006.

F. Vahdatikhaki, K. El Ammari, A. K. Langroodi, S. Miller, A. Hammad, and A. Doree, “Beyond data visualization: A context-realistic construction equipment training simulators,” Autom. Constr., vol. 106, p. 102853, Oct. 2019, DOI: 10.1016/j.autcon.2019.102853.

X. Li, W. Yi, H. L. Chi, X. Wang, and A. P. C. Chan, “A critical review of virtual and augmented reality (VR/AR) applications in construction safety,” Autom. Constr., vol. 86, pp. 150–162, Feb. 2018, DOI: 10.1016/j.autcon.2017.11.003.

H. Boessenkool, J. G. W. Wildenbeest, C. J. M. Heemskerk, M. R. de Baar, M. Steinbuch, and D. A. Abbink, “A task analysis approach to quantify bottlenecks in task completion time of telemanipulated maintenance,” Fusion Eng. Des., vol. 129, pp. 300–308, Apr. 2018, DOI: 10.1016/j.fusengdes.2017.10.002.

C. Boton, “Supporting constructability analysis meetings with Immersive Virtual Reality-based collaborative BIM 4D simulation,” Autom. Constr., vol. 96, pp. 1–15, Dec. 2018, DOI: 10.1016/j.autcon.2018.08.020.

M. Almestehi, W. Alomaim, L. Rainford, D. Stokes, M. Stanton, and M. Moran, “Role of the virtual reality simulator (ScanTrainer) as a multidisciplinary training tool in transvaginal ultrasound: A systematic review and narrative synthesis,” Radiography, vol. 25, no. 3. W.B. Saunders Ltd, pp. 260–268, Aug. 01, 2019, DOI: 10.1016/j.radi.2018.12.009.

C. R. Bruns and B. C. Chamberlain, “The influence of landmarks and urban form on cognitive maps using virtual reality,” Landsc. Urban Plan., vol. 189, pp. 296–306, Sep. 2019, DOI: 10.1016/j.landurbplan.2019.05.006.

Z. Ding, S. Liu, L. Liao, and L. Zhang, “A digital construction framework integrating building information modeling and reverse engineering technologies for renovation projects,” Autom. Constr., vol. 102, pp. 45–58, Jun. 2019, DOI: 10.1016/j.autcon.2019.02.012.

D. Stadnicka, P. Litwin, and D. Antonelli, “Human factor in intelligent manufacturing systems - Knowledge acquisition and motivation,” in Procedia CIRP, Jan. 2019, vol. 79, pp. 718–723, DOI: 10.1016/j.procir.2019.02.023.

A. Winkler-Schwartz et al., “Artificial Intelligence in Medical Education: Best Practices Using Machine Learning to Assess Surgical Expertise in Virtual Reality Simulation,” J. Surg. Educ., vol. 76, no. 6, pp. 1681–1690, Nov. 2019, DOI: 10.1016/j.jsurg.2019.05.015.

J. M. Goderstad, L. Sandvik, E. Fosse, and M. Lieng, “Development and validation of a general and easy assessable scoring system for laparoscopic skills using a virtual reality simulator,” Eur. J. Obstet. Gynecol. Reprod. Biol. X, vol. 4, p. 100092, Oct. 2019, DOI: 10.1016/j.eurox.2019.100092.

C. F. Cano and A. Roudaut, “MorphBenches: Using mixed reality experimentation platforms to study dynamic affordances in shape-changing devices,” Int. J. Hum. Comput. Stud., vol. 132, pp. 1–11, Dec. 2019, DOI: 10.1016/j.ijhcs.2019.07.006.

N. Mirchi, V. Bissonnette, R. Yilmaz, N. Ledwos, A. Winkler-Schwartz, and R. F. Del Maestro, “The virtual operative assistant: An explainable artificial intelligence tool for simulation-based training in surgery and medicine,” PLoS One, vol. 15, no. 2, 2020, DOI: 10.1371/journal.pone.0229596.

I. Czaplinski and A. L. Fielding, “Developing a contextualised blended learning framework to enhance medical physics student learning and engagement,” Phys. Medica, vol. 72, pp. 22–29, Apr. 2020, DOI: 10.1016/j.ejmp.2020.03.010.

J. Radianti, T. A. Majchrzak, J. Fromm, and I. Wohlgenannt, “A systematic review of immersive virtual reality applications for higher education: Design elements, lessons learned, and research agenda,” Comput. Educ., vol. 147, Apr. 2020, DOI: 10.1016/j.compedu.2019.103778.

S. Skard, E. S. Knudsen, H. Sjåstad, and H. Thorbjørnsen, “How virtual reality influences travel intentions: The role of mental imagery and happiness forecasting,” Tour. Manag., vol. 87, no. February, 2021, DOI: 10.1016/j.tourman.2021.104360




DOI: http://dx.doi.org/10.18517/ijaseit.12.2.16156

Refbacks

  • There are currently no refbacks.



Published by INSIGHT - Indonesian Society for Knowledge and Human Development