Assessing LAPAN-A3 Satellite with Line Imager Space Application (LISA) Sensor for Oil Spill Detection

Pingkan Mayestika Afgatiani, Andi Ibrahim, Maryani Hartuti, Ega Asti Anggari, Agus Herawan, Patria Rachman Hakim, Ety Parwati


LAPAN-A3 (LA3) data has been utilized for earth observation in monitoring natural resources. While most applications are toward land resources monitoring, recent utilization indicates the possibility of LA3 detecting oil spill events on the sea surface. This research provides information regarding the ability of sensors characteristics of LA3 to detect oil slicks and its initial results by examining multispectral bands combination using Optimum Index Factor (OIF), and Digital Number (DN) extraction is carried out on each LA3 band in water-oil-water since LA3 is not able to change DN to reflectance value. In this study, besides using LA3 data, Sentinel-2 data was also used as comparative data and results in validation. Based on the results of the OIF calculation, the combination of the Blue-Green-NIR (BGN) band has the highest value compared to other combinations. This indicates that the BGN band combination is appropriate for visualizing oil and distinguishing between oil and water. The pattern formed from the visualization results with the combination of the BGN band is silvery in crude oil and greenish in ship waste disposal. The result is also strengthened by DN extraction from slick oil samples that shows a prominent pattern on the Blue and Green bands. Finally, this study can conclude that LA3 has great potential to detect oil spills visually but still requires further research for reflectance analysis by converting the DN value into reflectance.


Band combination; LAPAN-A3; oil slick; optical satellite; optimum index factor.

Full Text:



J. Chenhao and X. Yupeng, “Risk Analysis and Emergency Response to Marine Oil Spill Environmental Pollution,†IOP Conf. Ser. Earth Environ. Sci., vol. 687, no. 1, 2021, doi: 10.1088/1755-1315/687/1/012070.

P. Klotz, I. R. Schloss, and D. Dumont, “Effects of a chronic oil spill on the planktonic system in San Jorge Gulf, Argentina: a one-vertical-dimension modeling approach,†Oceanography, vol. 31, no. 4, pp. 81–91, 2018.

B. Zhang, E. J. Matchinski, B. Chen, X. Ye, L. Jing, and K. Lee, Marine oil spills-oil pollution, sources and effects, Second Edi. Elsevier Ltd., 2018.

C. Hu, Y. Lu, S. Sun, and Y. Liu, “Optical Remote Sensing of Oil Spills in the Ocean: What Is Really Possible?,†J. Remote Sens., vol. 2021, pp. 1–13, 2021, doi: 10.34133/2021/9141902.

S. Sun, Y. Lu, Y. Liu, M. Wang, and C. Hu, “Tracking an Oil Tanker Collision and Spilled Oils in the East China Sea Using Multisensor Day and Night Satellite Imagery,†Geophys. Res. Lett., vol. 45, no. 7, pp. 3212–3220, 2018, doi: 10.1002/2018GL077433.

P. Amir-Heidari et al., “A state-of-the-art model for spatial and stochastic oil spill risk assessment: A case study of oil spill from a shipwreck,†Environ. Int., vol. 126, no. October 2018, pp. 309–320, 2019, doi: 10.1016/j.envint.2019.02.037.

J. Yang, J. Wan, Y. Ma, J. Zhang, and Y. Hu, “Characterization analysis and identification of common marine oil spill types using hyperspectral remote sensing,†Int. J. Remote Sens., vol. 41, no. 18, pp. 7163–7185, 2020, doi: 10.1080/01431161.2020.1754496.

M. Krestenitis, G. Orfanidis, K. Ioannidis, K. Avgerinakis, S. Vrochidis, and I. Kompatsiaris, “Oil spill identification from satellite images using deep neural networks,†Remote Sens., vol. 11, no. 15, pp. 1–22, 2019, doi: 10.3390/rs11151762.

J. Chen, W. Zhang, Z. Wan, S. Li, T. Huang, and Y. Fei, “Oil spills from global tankers: Status review and future governance,†J. Clean. Prod., vol. 227, pp. 20–32, 2019, doi: 10.1016/j.jclepro.2019.04.020.

R. Al-Ruzouq et al., “Sensors, features, and machine learning for oil spill detection and monitoring: A review,†Remote Sens., vol. 12, no. 20, pp. 1–42, 2020, doi: 10.3390/rs12203338.

V. H. R. Prudente, V. S. Martins, D. C. Vieira, N. R. de F. e. Silva, M. Adami, and I. D. A. Sanches, “Limitations of cloud cover for optical remote sensing of agricultural areas across South America,†Remote Sens. Appl. Soc. Environ., vol. 20, no. September, p. 100414, 2020, doi: 10.1016/j.rsase.2020.100414.

M. Fingas and C. E. Brown, Oil Spill Remote Sensing. Elsevier Inc., 2017.

F. Lei, W. Wang, W. Zhang, K. Li, and Z. Xu, “Oil Spills Tracking Through Texture Analysis from MODIS Imagery,†Int. Geosci. Remote Sens. Symp., pp. 9768–9771, 2019, doi: 10.1109/IGARSS.2019.8898595.

T. Lacava et al., “A MODIS-based robust satellite technique (RST) for timely detection of oil spilled areas,†Remote Sens., vol. 9, no. 2, pp. 1–15, 2017, doi: 10.3390/rs9020128.

M. S. Ozigis, J. D. Kaduk, and C. H. Jarvis, “Mapping terrestrial oil spill impact using machine learning random forest and Landsat 8 OLI imagery: a case site within the Niger Delta region of Nigeria,†Environ. Sci. Pollut. Res., vol. 26, no. 4, pp. 3621–3635, 2019, doi: 10.1007/s11356-018-3824-y.

N. Arslan, “Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors,†Environ. Monit. Assess., vol. 190, no. 11, 2018, doi: 10.1007/s10661-018-7017-4.

P. Kolokoussis and V. Karathanassi, “Oil spill detection and mapping using sentinel 2 imagery,†J. Mar. Sci. Eng., vol. 6, no. 1, 2018, doi: 10.3390/jmse6010004.

J. J. A. Althawadi and M. Hashim, “An Approach of Vicarious Calibration of Sentinel-2 Satellite Multispecral Image Based on Spectral Library for Mapping Oil Spills,†Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch., vol. 42, no. 4/W16, pp. 117–121, 2019, doi: 10.5194/isprs-archives-XLII-4-W16-117-2019.

S. Rajendran et al., “Sentinel-2 image transformation methods for mapping oil spill – A case study with Wakashio oil spill in the Indian Ocean, off Mauritius,†MethodsX, vol. 8, 2021, doi: 10.1016/j.mex.2021.101327.

W. Hasbi and Suhermanto, “Development of LAPAN-A3/IPB satellite an experimental remote sensing microsatellite,†34th Asian Conf. Remote Sens. 2013, ACRS 2013, vol. 2, no. October, pp. 1508–1515, 2013.

Z. Zylshal, R. Wirawan, and D. Kushardono, “Assessing the Potential of LAPAN-A3 Data for Landuse/landcover Mapping,†Indones. J. Geogr., vol. 50, no. 2, pp. 184–196, 2019, doi: 10.22146/ijg.31449.

Z. Zylshal, “Topographic correction of Lapan-A3/Lapan-IPB multispectral image: A comparison of five different algorithms,†Quaest. Geogr., vol. 39, no. 3, pp. 33–45, 2020, doi: 10.2478/quageo-2020-0021.

Z. Zylshal, “Performance evaluation of different DEMs for topographic correction on LAPAN-A3: preliminary results,†no. November 2019, p. 1, 2019, doi: 10.1117/12.2543437.

F. Löw, K. Stieglitz, and O. Diemar, “Terrestrial oil spill mapping using satellite earth observation and machine learning: A case study in South Sudan,†J. Environ. Manage., vol. 298, 2021, doi: 10.1016/j.jenvman.2021.113424.

A. K. Wijayanto, S. M. Yusuf, and W. A. Pambudi, “The Characteristic of spectral reflectance of LAPAN-IPB (LAPAN-A3) Satellite and Landsat 8 over agricultural area in Probolinggo, East Java,†IOP Conf. Ser. Earth Environ. Sci., vol. 284, no. 1, pp. 1–14, 2019, doi: 10.1088/1755-1315/284/1/012004.

A. Herawan, A. Julzarika, P. R. Hakim, and E. A. Anggari, “Object-Based on Land Cover Classification on LAPAN-A3 Satellite Imagery Using Tree Algorithm (Case Study: Rote Island),†Int. J. Adv. Sci. Eng. Inf. Technol., vol. 11, no. 6, pp. 2254–2260, 2021, doi: 10.18517/ijaseit.11.6.14200.

S. Arifin, I. Carolita, and T. Kartika, “Aplikasi model geobiofisik NDVI untuk identifikasi hutan pada data satelit Lapan-A3,†J. Penginderaan Jauh dan Pengolah. Data Citra Digit., vol. 16, no. 2, pp. 91–100, 2019.

N. M. N. Khamsah, S. Utama, R. H. Surayuda, and P. R. Hakim, “The development of LAPAN-A3 satellite off-nadir imaging mission,†Proc. 2019 IEEE Int. Conf. Aerosp. Electron. Remote Sens. Technol. ICARES 2019, pp. 3–8, 2019, doi: 10.1109/ICARES.2019.8914347.

D. Traganos and P. Reinartz, “Mapping Mediterranean seagrasses with Sentinel-2 imagery,†Mar. Pollut. Bull., vol. 134, no. March, pp. 197–209, 2018, doi: 10.1016/j.marpolbul.2017.06.075.

P. R. Hakim, A. H. Syafrudin, S. Salaswati, S. Utama, and W. Hasbi, “Development of Systematic Image Preprocessing of LAPAN-A3/IPB Multispectral Images,†Int. J. Adv. Stud. Comput. Sci. Eng., vol. 7, no. 10, pp. 9–18, 2019.

P. R. Hakim, A. H. Syafrudin, A. Wahyudiono, and S. Utama, Autonomous Band Co-registration of LAPAN-A3 Multispectral Imager using Edge Detection and Fast Fourier Transform, vol. 2143, no. September. 2017.

P. R. Hakim, W. Hasbi, and A. H. Syafrudin, “ADCS requirements of Lapan-A3 satellite based on image geometry analysis,†Proceeding - ICARES 2014 2014 IEEE Int. Conf. Aerosp. Electron. Remote Sens. Technol., pp. 142–146, 2014, doi: 10.1109/ICARES.2014.7024383.

M. A. Aguilar, A. Nemmaoui, F. J. Aguilar, A. Novelli, and A. García Lorca, “Improving georeferencing accuracy of Very High Resolution satellite imagery using freely available ancillary data at global coverage,†Int. J. Digit. Earth, vol. 10, no. 10, pp. 1055–1069, 2017, doi: 10.1080/17538947.2017.1280549.

A.-M. Loghin, J. Otepka-Schremmer, C. Ressl, and N. Pfeifer, “Improvement of VHR Satellite Image Geometry with High Resolution Elevation Models,†Remote Sens., vol. 14, no. 10, p. 2303, 2022, doi: 10.3390/rs14102303.

C. P.Dave, R. Joshi, and S. S. Srivastava, “A Survey on Geometric Correction of Satellite Imagery,†Int. J. Comput. Appl., vol. 116, no. 12, pp. 24–27, 2015, doi: 10.5120/20389-2655.

T. D. Acharya, I. T. Yang, and D. H. Lee, “Land cover classification of imagery from landsat operational land imager based on optimum index factor,†Sensors Mater., vol. 30, no. 8, pp. 1753–1764, 2018, doi: 10.18494/SAM.2018.1866.

S. R. Yousif and W. F. Shneen, “Using Optimum Index Factor and Determinant Covariance Methods and Compare to PCA on Satellite Images to Determine the Earth’s Landmarks ( Part of Tar- An Najaf and Its Neighbours),†J. Phys. Conf. Ser., vol. 1660, no. 1, 2020, doi: 10.1088/1742-6596/1660/1/012077.

K. Abdunaser, “Spatio-temporal analysis of oil lake and oil-polluted surfaces from remote sensing data in one of the Libyan oil fields,†Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020, doi: 10.1038/s41598-020-76992-5.

M. S. Ziliwu, Tulus, Sutarman, M. Zarlis, Z. Situmorang, and A. S. Harahap, “Optimum Index Factor and Cloud Removal on the Landsat Imagery Data Processing,†J. Phys. Conf. Ser., vol. 1116, no. 2, 2018, doi: 10.1088/1742-6596/1116/2/022048.

M. A. Saad, M. Kamil, N. H. Abdurahman, R. M. Yunus, and O. I. Awad, “An overview of recent advances in state-of-the-art techniques in the demulsification of crude oil emulsions,†Processes, vol. 7, no. 7, pp. 1–26, 2019, doi: 10.3390/pr7070470.

M. Fingas, “Handbook of Oil Spill Science and Technology,†Handb. Oil Spill Sci. Technol., pp. 1–693, 2015, doi: 10.1002/9781118989982.

B. Debdip, “OPTIMUM INDEX FACTOR (OIF) FOR LANDSAT DATA: A CASE STUDY ON BARASAT TOWN, WEST BENGAL, INDIA,†Int. J. Remote Sens. Geosci., vol. 2, no. 5, pp. 11–17, 2013.

P. M. Afgatiani, F. A. Putri, A. G. Suhadha, and A. Ibrahim, “Determination of Sentinel-2 spectral reflectance to detect oil spill on the sea surface,†Sustinere J. Environ. Sustain., vol. 4, no. 3, pp. 144–154, 2020, doi: 10.22515/sustinere.jes.v4i3.115.

S. Salaswati, P. R. Hakim, A. H. Syafrudin, R. Hartono, and S. Utama, “Vicarious Radiometric Calibration of Lapan-A3 / IPB Satellite Multispectral Imager in Jaddih Hill Madura,†J. Aerosp. Technol., pp. 31–42, 2020.

K. Arai et al., “Method for uncertainty evaluation of vicarious calibration of spaceborne visible to near infrared radiometers,†Int. J. Adv. Comput. Sci. Appl., vol. 10, no. 1, pp. 387–393, 2019, doi: 10.14569/IJACSA.2019.0100151.

T. Lammoglia and C. R. de S. Filho, “Spectroscopic characterization of oils yielded from Brazilian offshore basins: Potential applications of remote sensing,†Remote Sens. Environ., vol. 115, no. 10, pp. 2525–2535, 2011, doi: 10.1016/j.rse.2011.04.038.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development