### Classification of Air-Cured Tobacco Leaf Pests Using Pruning Convolutional Neural Networks and Transfer Learning

#### Abstract

#### Keywords

#### Full Text:

PDF#### References

C. S. Marzan and C. R. Ruiz, â€œAutomated tobacco grading using image processing techniques and a convolutional neural network,â€ Int. J. Mach. Learn. Comput., vol. 9, no. 6, pp. 807â€“813, 2019, doi: 10.18178/ijmlc.2019.9.6.877.

A. Harjoko, A. Prahara, T. W. Supardi, I. Candradewi, R. Pulungan, and S. Hartati, â€œImage processing approach for grading tobacco leaf based on color and quality,â€ Int. J. Smart Sens. Intell. Syst., vol. 12, no. 1, pp. 1â€“10, 2019, doi: 10.21307/ijssis-2019-010.

D. S. Guru, P. B. Mallikarjuna, S. Manjunath, and M. M. Shenoi, â€œMachine Vision Based Classification Of Tobacco Leaves For Automatic Harvesting,â€ Intell. Autom. Soft Comput., vol. 18, no. 5, pp. 581â€“590, 2012, doi: 10.1080/10798587.2012.10643267.

Y. Sun, H. Q. Wang, Z. Y. Xia, J. H. Ma, and M. Z. Lv, â€œTobacco-disease Image Recognition via Multiple-Attention Classification Network,â€ J. Phys. Conf. Ser., vol. 1584, no. 1, 2020, doi: 10.1088/1742-6596/1584/1/012008.

D. I. Swasono, H. Tjandrasa, and C. Fatichah, â€œClassification of tobacco leaf pests using VGG16 transfer learning,â€ Proc. 2019 Int. Conf. Inf. Commun. Technol. Syst. ICTS 2019, pp. 176â€“181, 2019, doi: 10.1109/ICTS.2019.8850946.

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, â€œGradient-based learning applied to document recognitionâ€, Proc. IEEE 86 (11) (1998) 2278â€“2324, 1998.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, â€œGoing deeper with convolutionsâ€, In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1â€“9, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, â€œDeep Residual Learning for Image Recognitionâ€, IEEE Conf. Comput. Vis. Pattern Recognit. 770â€“778 (2016). doi:10.1109/CVPR.2016.90, 2016.

J. Zou, T. Rui, Y. Zhou, C. Yang, and S. Zhang, â€œConvolutional neural network simplification via feature map pruning,â€ Comput. Electr. Eng., vol. 70, pp. 950â€“958, 2018, doi: 10.1016/j.compeleceng.2018.01.036.

G. Li, J. Wang, H. W. Shen, K. Chen, G. Shan, and Z. Lu, â€œCNNPruner: Pruning convolutional neural networks with visual analytics,â€ IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 1364â€“1373, 2021, doi: 10.1109/TVCG.2020.3030461.

B. O. Ayinde, T. Inanc, and J. M. Zurada, â€œRedundant feature pruning for accelerated inference in deep neural networks,â€ Neural Networks, vol. 118, pp. 148â€“158, 2019, doi: 10.1016/j.neunet.2019.04.021.

C. Yang et al., â€œStructured Pruning of Convolutional Neural Networks via L1 Regularization,â€ IEEE Access, vol. 7, pp. 106385â€“106394, 2019, doi: 10.1109/ACCESS.2019.2933032.

P. Singh, V. K. Verma, P. Rai, and V. P. Namboodiri, â€œAcceleration of Deep Convolutional Neural Networks Using Adaptive Filter Pruning,â€ IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 838â€“847, 2020, doi: 10.1109/JSTSP.2020.2992390.

C. Liu and H. Wu, â€œChannel pruning based on mean gradient for accelerating Convolutional Neural Networks,â€ Signal Processing, vol. 156, pp. 84â€“91, 2019, doi: 10.1016/j.sigpro.2018.10.019.

A. H. Ashouri, T. S. Abdelrahman, and A. Dos Remedios, â€œRetraining-free methods for fast on-the-fly pruning of convolutional neural networks,â€ Neurocomputing, vol. 370, no. xxxx, pp. 56â€“69, 2019, doi: 10.1016/j.neucom.2019.08.063.

F. E. Fernandes and G. G. Yen, â€œPruning Deep Convolutional Neural Networks Architectures with Evolution Strategy,â€ Inf. Sci. (Ny)., vol. 552, pp. 29â€“47, 2021, doi: 10.1016/j.ins.2020.11.009.

S. K. Yeom et al., â€œPruning by explaining: A novel criterion for deep neural network pruning,â€ Pattern Recognit., vol. 115, 2021, doi: 10.1016/j.patcog.2021.107899.

A. Jordao, M. Lie, and W. R. Schwartz, â€œDiscriminative Layer Pruning for Convolutional Neural Networks,â€ IEEE J. Sel. Top. Signal Process., vol. 14, no. 4, pp. 828â€“837, 2020, doi: 10.1109/JSTSP.2020.2975987.

F. Tung and G. Mori, â€œDeep Neural Network Compression by In-Parallel Pruning-Quantization,â€ IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, no. 3, pp. 568â€“579, 2020, doi: 10.1109/TPAMI.2018.2886192.

Y. Liang, W. Liu, S. Yi, H. Yang, and Z. He, â€œFilter pruning-based two-step feature map reconstruction,â€ Signal, Image Video Process., vol. 15, no. 7, pp. 1555â€“1563, 2021, doi: 10.1007/s11760-021-01888-4.

C. Qi et al., â€œAn efficient pruning scheme of deep neural networks for Internet of Things applications,â€ EURASIP J. Adv. Signal Process., vol. 2021, no. 1, 2021, doi: 10.1186/s13634-021-00744-4.

E. Jeczmionek and P. A. Kowalski, â€œFlattening layer pruning in convolutional neural networks,â€ Symmetry (Basel)., vol. 13, no. 7, pp. 1â€“13, 2021, doi: 10.3390/sym13071147.

S. Zhang, G. Wu, J. Gu, and J. Han, â€œPruning convolutional neural networks with an attention mechanism for remote sensing image classification,â€ Electron., vol. 9, no. 8, pp. 1â€“19, 2020, doi: 10.3390/electronics9081209.

DOI: http://dx.doi.org/10.18517/ijaseit.12.3.15950

### Refbacks

- There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development