Convolutional Neural Network to Detect the Optimal Water Content of Cassava Chips During the Drying Process

Yusuf Hendrawan, Bagas Rohmatulloh, Fardha Irfatul Ilmi, Muchammad Riza Fauzy, Retno Damayanti, Dimas Firmanda Al Riza, Mochamad Bagus Hermanto, Sandra Sandra


Cassava chips are used as raw materials to manufacture modified cassava flour. To produce high-quality modified cassava flour, a drying process for cassava chips is required to produce optimal water content in the range of 15-18% wb. This study aims to detect the optimal water content of cassava chips during the drying process in a hybrid hot-air tray dryer with computer vision using a convolutional neural network. Three categories of cassava chips' water content during the drying process are wet (water content of 55-70% wb), semi-dry (20-40% wb), and optimal dry (15-18% wb). In this study, the performance of four types of the pre-trained convolutional neural network, i.e., AlexNet, GoogLeNet, ResNet-50, and SqueezeNet, were compared by using different optimizers (SGDm, Adam, and RMSProp) and different learning rate values, 0.00005 and 0.0001, resulting in 24 types of experimental design. The results showed 12 convolutional neural network models with perfect validation accuracy. AlexNet with the SGDm optimizer and learning rate of 0.00005 was determined as the best model because of its stable training iteration process that experienced no fluctuations, perfect validation accuracy, specifically 100%, as well as perfect testing accuracy was 100%, and fastest training and validation process time, notably 32 minutes. This best convolutional neural network model will later be used to develop a rapid, real-time, and accurate hybrid hot-air tray dryer with computer vision to maintain cassava chip products with optimal water content.


Cassava chips; computer vision; convolutional neural network; drying; water content.

Full Text:



T. Sigüenza-Andrés, C. Gallego, and M. Gómez, “Can cassava improve the quality of gluten free breads?,†LWT, vol. 149, p. 111923, Sep. 2021, doi: 10.1016/J.LWT.2021.111923.

S. A. Oyeyinka, A. A. Adeloye, O. O. Olaomo, and E. Kayitesi, "Effect of fermentation time on physicochemical properties of starch extracted from cassava root," Food Biosci., vol. 33, p. 100485, Feb. 2020, doi: 10.1016/J.FBIO.2019.100485.

O. E. Dudu, Y. Ma, A. Adelekan, A. B. Oyedeji, S. A. Oyeyinka, and J. W. Ogungbemi, "Bread-making potential of heat-moisture treated cassava flour-additive complexes," LWT, vol. 130, Aug. 2020, doi: 10.1016/J.LWT.2020.109477.

B. S. Adesina and O. T. Bolaji, "Effect of milling machines and sieve sizes on cooked cassava flour quality," Niger. Food J., vol. 31, no. 1, pp. 115–119, Jan. 2013, doi: 10.1016/S0189-7241(15)30065-5.

P. Pornpraipech, M. Khusakul, R. Singklin, P. Sarabhorn, and C. Areeprasert, "Effect of temperature and shape on drying performance of cassava chips," Agric. Nat. Resour., vol. 51, no. 5, pp. 402–409, Oct. 2017, doi: 10.1016/J.ANRES.2017.12.004.

P. D. Tegenaw, P. Verboven, and M. Vanierschot, "Numerical and experimental study of airflow resistance across an array of sliced food items during drying," J. Food Eng., vol. 312, p. 110739, Jan. 2022, doi: 10.1016/J.JFOODENG.2021.110739.

S. Hosseinpour, S. Rafiee, S. S. Mohtasebi, and M. Aghbashlo, "Application of computer vision technique for online monitoring of shrimp color changes during drying," J. Food Eng., vol. 115, no. 1, pp. 99–114, Mar. 2013, doi: 10.1016/J.JFOODENG.2012.10.003.

M. Keramat-Jahromi, S. S. Mohtasebi, H. Mousazadeh, M. Ghasemi-Varnamkhasti, and M. Rahimi-Movassagh, "Real-time moisture ratio study of drying date fruit chips based on online image attributes using kNN and random forest regression methods," measurement, vol. 172, p. 108899, Feb. 2021, doi: 10.1016/J.MEASUREMENT.2020.108899.

Y. Su, M. Zhang, and A. S. Mujumdar, "Recent developments in smart drying technology," Dry. Technol., vol. 33, no. 3, pp. 260–276, Feb. 2014, doi: 10.1080/07373937.2014.985382.

X. Li, Y. Liu, Z. Gao, Y. Xie, and H. Wang, "Computer vision online measurement of shiitake mushroom (Lentinus edodes) surface wrinkling and shrinkage during hot air drying with humidity control," J. Food Eng., vol. 292, p. 110253, Mar. 2021, doi: 10.1016/J.JFOODENG.2020.110253.

S. Hosseinpour, S. Rafiee, M. Aghbashlo, and S. S. Mohtasebi, "A novel image processing approach for in-line monitoring of visual texture during shrimp drying," J. Food Eng., vol. Complete, no. 143, pp. 154–166, 2014, doi: 10.1016/J.JFOODENG.2014.07.003.

F. Raponi, R. Moscetti, S. S. Nallan Chakravartula, M. Fidaleo, and R. Massantini, "Monitoring the hot-air drying process of organically grown apples (cv. Gala) using computer vision," Biosyst. Eng., Jul. 2021, doi: 10.1016/J.BIOSYSTEMSENG.2021.07.005.

D. J. Sampson, Y. K. Chang, H. P. V. Rupasinghe, and Q. U. Zaman, "A dual-view computer-vision system for volume and image texture analysis in multiple apple slices drying," J. Food Eng., vol. 127, pp. 49–57, Apr. 2014, doi: 10.1016/J.JFOODENG.2013.11.016.

D. Wang, A. Martynenko, K. Corscadden, and Q. He, "Computer vision for bulk volume estimation of apple slices during drying," DryingTechnology, vol. 35, no. 5, pp. 616–624, Apr. 2017, doi: 10.1080/07373937.2016.1196700.

D. Colucci, L. Morra, X. Zhang, D. Fissore, and F. Lamberti, "An automatic computer vision pipeline for the in-line monitoring of freeze-drying processes," Comput. Ind., vol. 115, p. 103184, Feb. 2020, doi: 10.1016/J.COMPIND.2019.103184.

P. Udomkun, M. Nagle, D. Argyropoulos, A. N. Wiredu, B. Mahayothee, and J. Müller, "Computer vision coupled with laser backscattering for non-destructive colour evaluation of papaya during drying," J. Food Meas. Charact., vol. 11, no. 4, pp. 2142–2150, Dec. 2017, doi: 10.1007/S11694-017-9598-Y.

J. Chen, M. Zhang, B. Xu, J. Sun, and A. S. Mujumdar, "Artificial intelligence assisted technologies for controlling the drying of fruits and vegetables using physical fields: A review," Trends Food Sci. Technol., vol. 105, pp. 251–260, Nov. 2020, doi: 10.1016/J.TIFS.2020.08.015.

M. H. Nadian, M. H. Abbaspour-Fard, A. Martynenko, and M. R. Golzarian, "An intelligent integrated control of hybrid hot air-infrared dryer based on fuzzy logic and computer vision system," Comput. Electron. Agric., vol. 137, pp. 138–149, May 2017, doi: 10.1016/J.COMPAG.2017.04.001.

Z. L. Liu et al., "Color prediction of mushroom slices during drying using Bayesian extreme learning machine," Dry. Technol., vol. 38, no. 14, pp. 1869–1881, Oct. 2019, doi: 10.1080/07373937.2019.1675077.

Y. Hendrawan and D. F. Al Riza, "Machine vision optimization using nature-inspired algorithms to model Sunagoke moss water status," Int. J. Adv. Sci. Eng. Inf. Technol., vol. 6, no. 1, pp. 45–57, Jan. 2016, doi: 10.18517/IJASEIT.6.1.523.

Y. Hendrawan, L. C. Hawa, and R. Damayanti, "Fish swarm intelligent to optimize real time monitoring of chips drying using machine vision," IOP Conf. Ser. Earth Environ. Sci., vol. 131, p. 012020, Mar. 2018, doi: 10.1088/1755-1315/131/1/012020.

M. H. Nadian, S. Rafiee, M. Aghbashlo, S. Hosseinpour, and S. S. Mohtasebi, "Continuous real-time monitoring and neural network modeling of apple slices color changes during hot air drying," Food Bioprod. Process., vol. 94, pp. 263–274, Apr. 2015, doi: 10.1016/J.FBP.2014.03.005.

M. P. Fabani, J. P. Capossio, M. C. Román, W. Zhu, R. Rodriguez, and G. Mazza, "Producing non-traditional flour from watermelon rind pomace: Artificial neural network (ANN) modeling of the drying process," J. Environ. Manage., vol. 281, p. 111915, Mar. 2021, doi: 10.1016/J.JENVMAN.2020.111915.

D. I. Onwude, N. Hashim, K. Abdan, R. Janius, and G. Chen, "The potential of computer vision, optical backscattering parameters and artificial neural network modelling in monitoring the shrinkage of sweet potato (Ipomoea batatas L.) during drying," J. Sci. Food Agric., vol. 98, no. 4, pp. 1310–1324, Mar. 2018, doi: 10.1002/JSFA.8595.

A. Taheri-Garavand, F. Karimi, M. Karimi, V. Lotfi, and G. Khoobbakht, "Hybrid response surface methodology-artificial neural network optimization of drying process of banana slices in a forced convective dryer," Food Sci. Technol. Int., vol. 24, no. 4, pp. 277–291, Jun. 2018, doi: 10.1177/1082013217747712.

S. Rezaei, N. Behroozi-Khazaei, and H. Darvishi, "Microwave power adjusting during potato slice drying process using machine vision," Comput. Electron. Agric., vol. 160, pp. 40–50, May 2019, doi: 10.1016/J.COMPAG.2019.03.013.

N. Behroozi Khazaei, T. Tavakoli, H. Ghassemian, M. H. Khoshtaghaza, and A. Banakar, "Applied machine vision and artificial neural network for modeling and controlling of the grape drying process," Comput. Electron. Agric., vol. 98, pp. 205–213, Oct. 2013, doi: 10.1016/J.COMPAG.2013.08.010.

H. Yu, L. T. Yang, Q. Zhang, D. Armstrong, and M. J. Deen, "Convolutional neural networks for medical image analysis: State-of-the-art, comparisons, improvement and perspectives," Neurocomputing, vol. 444, pp. 92–110, Jul. 2021, doi: 10.1016/J.NEUCOM.2020.04.157.

M. Koklu, I. Cinar, and Y. S. Taspinar, "Classification of rice varieties with deep learning methods," Comput. Electron. Agric., vol. 187, p. 106285, Aug. 2021, doi: 10.1016/J.COMPAG.2021.106285.

A. Jahanbakhshi, M. Momeny, M. Mahmoudi, and Y. D. Zhang, "Classification of sour lemons based on apparent defects using stochastic pooling mechanism in deep convolutional neural networks," Sci. Hortic. (Amsterdam)., vol. 263, p. 109133, Mar. 2020, doi: 10.1016/J.SCIENTA.2019.109133.

M. Momeny, A. Jahanbakhshi, K. Jafarnezhad, and Y. D. Zhang, "Accurate classification of cherry fruit using deep CNN based on hybrid pooling approach," Postharvest Biol. Technol., vol. 166, p. 111204, Aug. 2020, doi: 10.1016/J.POSTHARVBIO.2020.111204.

J. Shin, Y. K. Chang, B. Heung, T. Nguyen-Quang, G. W. Price, and A. Al-Mallahi, "A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves," Comput. Electron. Agric., vol. 183, p. 106042, Apr. 2021, doi: 10.1016/J.COMPAG.2021.106042.

B. Jiang et al., "Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues," Artif. Intell. Agric., vol. 1, pp. 1–8, Mar. 2019, doi: 10.1016/J.AIIA.2019.02.001.

P. McAllister, H. Zheng, R. Bond, and A. Moorhead, "Combining deep residual neural network features with supervised machine learning algorithms to classify diverse food image datasets," Comput. Biol. Med., vol. 95, pp. 217–233, Apr. 2018, doi: 10.1016/J.COMPBIOMED.2018.02.008.

G. Ciocca, P. Napoletano, and R. Schettini, “CNN-based features for retrieval and classification of food images,†Comput. Vis. Image Underst., vol. 176–177, pp. 70–77, Nov. 2018, doi: 10.1016/J.CVIU.2018.09.001.

Y. Hendrawan, R. Damayanti, D. F. Al Riza, and M. B. Hermanto, "Classification of water stress in cultured Sunagoke moss using deep learning," TELKOMNIKA (Telecommunication Comput. Electron. Control., vol. 19, no. 5, pp. 1594–1604, Sep. 2021, doi: 10.12928/TELKOMNIKA.V19I5.20063.

S. R. Nayak, D. R. Nayak, U. Sinha, V. Arora, and R. B. Pachori, "Application of deep learning techniques for detection of COVID-19 cases using chest X-ray images: A comprehensive study," Biomed. Signal Process. Control, vol. 64, p. 102365, Feb. 2021, doi: 10.1016/J.BSPC.2020.102365.

M. Panahi, N. Sadhasivam, H. R. Pourghasemi, F. Rezaie, and S. Lee, "Spatial prediction of groundwater potential mapping based on convolutional neural network (CNN) and support vector regression (SVR)," J. Hydrol., vol. 588, p. 125033, Sep. 2020, doi: 10.1016/J.JHYDROL.2020.125033.

L. Bragagnolo, L. R. Rezende, R. V. da Silva, and J. M. V. Grzybowski, "Convolutional neural networks applied to semantic segmentation of landslide scars," CATENA, vol. 201, p. 105189, Jun. 2021, doi: 10.1016/J.CATENA.2021.105189.

F. Ucar and D. Korkmaz, "COVIDiagnosis-Net: Deep Bayes-SqueezeNet based diagnosis of the coronavirus disease 2019 (COVID-19) from X-ray images," Med. Hypotheses, vol. 140, p. 109761, Jul. 2020, doi: 10.1016/J.MEHY.2020.109761.

M. M. Raikar, S. M. Meena, C. Kuchanur, S. Girraddi, and P. Benagi, "Classification and grading of okra-ladies finger using deep learning," Procedia Comput. Sci., vol. 171, pp. 2380–2389, Jan. 2020, doi: 10.1016/J.PROCS.2020.04.258.

L. Mkonyi et al., "Early identification of Tuta absoluta in tomato plants using deep learning," Sci. African, vol. 10, p. e00590, Nov. 2020, doi: 10.1016/J.SCIAF.2020.E00590.

H. Manninen, C. J. Ramlal, A. Singh, S. Rocke, J. Kilter, and M. Landsberg, "Toward automatic condition assessment of high-voltage transmission infrastructure using deep learning techniques," Int. J. Electr. Power Energy Syst., vol. 128, p. 106726, Jun. 2021, doi: 10.1016/J.IJEPES.2020.106726.

K. Thenmozhi and U. Srinivasulu Reddy, "Crop pest classification based on deep convolutional neural network and transfer learning," Comput. Electron. Agric., vol. 164, p. 104906, Sep. 2019, doi: 10.1016/J.COMPAG.2019.104906.

J. Xu, Y. Zhang, and D. Miao, "Three-way confusion matrix for classification: A measure driven view," Inf. Sci. (Ny)., vol. 507, pp. 772–794, Jan. 2020, doi: 10.1016/J.INS.2019.06.064.

Y. Hendrawan et al., "Deep learning to detect and classify the purity level of luwak coffee green beans," Pertanika J. Sci. Technol., vol. 30, no. 1, pp. 1–18, Dec. 2021, doi: 10.47836/PJST.30.1.01.

T. Takase, "Dynamic batch size tuning based on stopping criterion for neural network training," Neurocomputing, vol. 429, pp. 1–11, Mar. 2021, doi: 10.1016/J.NEUCOM.2020.11.054.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development