Estimating the Nanobubble Aerated System and Stocking Density Effects on Oxygen Consumption and Survival of Litopenaeus vannamei (Boone, 1931) Postlarvae 8 Using Receiver Operating Characteristic (ROC) Analysis

Lily Susanti, Suyud Warno Utomo, Noverita Dian Takarina


Litopenaeus vannamei postlarvae (PL) 8 were usually stocked at high densities, affecting the shrimp and water quality. This condition makes stocking density becomes a challenge in shrimp cultures, and one of the solutions for this is using a nanobubble aerated system. Meanwhile, there is a lack of robust studies estimating the nanobubble and stocking density effects on shrimp survival and water quality. This study used different stocking densities of 200, 400, and 600 postlarvae/L under nanobubble treatment and control (without nanobubble) to culture L. vannamei PL 8 and were assessed using Receiver Operating Characteristic (ROC) analysis. The ROC showed that the values of area Under the Curve (AUC) for dissolved oxygen (DO), survival rates, and oxygen consumption were 0.826 (95%CI: 0.598-1.000), 0.722 (95%CI: 0.47-0.794), and 0.576 (95%CI: 0.28-0.873), respectively. Considering these AUC values, it can be concluded that nanobubble treatment has the possibility to affect DO and shrimp survival, although it is not the same for shrimp oxygen consumption because it has the lowest AUC values. The optimum values for DO, survival rates, and oxygen consumption of shrimp under nanobubble treatment were observed at densities of 400 postlarvae/L. The survival and oxygen consumption of L. vannamei PL 8 at this density were 96.83% (95%CI: 95.2-98.4) and 0.52 mg/g/h (95%CI: 0.46-0.57). Meanwhile, water DO, temperature, and EC were 4.08 mg/L (95%CI: 2.84-5.32), 27.27°C (95%CI: 27.30-27.40), and 1.43 mS/cm (95%CI: 1.40-1.46), respectively. Nanobubble has maintained DO and temperature in the suitable range for L. vannamei PL8 survival.


AUC; nanobubble; oxygen; postlarvae; ROC; survival.

Full Text:



H. A. Abdelrahman, A. Abebe, and C. E. Boyd, "Influence of variation in water temperature on survival, growth and yield of Pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture," Aquac. Res., vol. 50, no. 2, pp. 658–672, 2019, DOI: 10.1111/are.13943.

J. T. Ponce-Palafox, Ã. A. Pavia, D. G. Mendoza López, J. L. Arredondo-Figueroa, F. Lango-Reynoso, M. del R. Castañeda-Chávez, H. Esparza-Leal, A. Ruiz-Luna, F. Páez-Osuna, S. G. Castillo-Vargasmachuca, and V. Peraza-Gómez, "Response surface analysis of temperature-salinity interaction effects on water quality, growth and survival of shrimp Penaeus vannamei postlarvae raised in biofloc intensive nursery production," Aquac., vol. 503, pp. 312–321, 2019, DOI: 10.1016/j.aquaculture.2019.01.020.

S. A. Ulaje, S. E. Lluch-Cota, M. T. Sicard, F. Ascencio, P. Cruz-Hernández, I. S. Racotta, and L. Rojo-Arreola, "Litopenaeus vannamei oxygen consumption and HSP gene expression at cyclic conditions of hyperthermia and hypoxia," J. Therm. Biol., vol. 92, pp. 102666, 2020, DOI: 10.1016/j.jtherbio.2020.102666.

H. Villarreal, P. Hinojosa, and J. Naranjo, "Effect of temperature and salinity on the oxygen consumption of laboratory produced Penaeus vannamei postlarvae," Comp. Biochem. Physiol., vol. 108, no. 2–3, pp. 331–336, 1994, DOI: 10.1016/0300-9629(94)90103-1.

C. Rosas, N. López, P. Mercado, and E. Martínez, "Effect of salinity acclimation on oxygen consumption of juveniles of the white shrimp Litopenaeus vannamei," J. Crust. Biol., vol. 21, no. 4, pp. 912–922, 2001, DOI: 10.1163/20021975-99990183.

J. F. Bermudes-Lizárraga, M. Nieves-Soto, M. A. Medina-Jasso, J. C. Román-Reyes, L. M. Flores-Campaña, A. A. Ortega-Salas, and P. Piña-Valdez, "Effect of temperature and salinity on larval growth of Litopenaeus vannamei," Rev. Biol. Mar. Oceanogr., vol. 52, no. 3, pp. 611–615, 2017.

C. A. P. Gaona, M. S. de Almeida, V. Viau, L. H. Poersch, and W. Wasielesky, "Effect of different total suspended solids levels on a Litopenaeus vannamei (Boone, 1931) BFT culture system during biofloc formation," Aquac. Res., vol. 48, no. 3, pp. 1070–1079, 2015, DOI: 10.1111/are.12949.

E. Chan-Vivas, M. G. Edén, C. Maldonado, K. Escalante, G. Gaxiola, and G. Cuzon, "Does Biofloc Improve the Energy Distribution and Final Muscle Quality of Shrimp, Litopenaeus vannamei (Boone, 1883)?," J. World Aquac. Soc., vol. 50, no. 2, pp. 460–468, 2019, DOI: 10.1111/jwas.12522.

T. W. Tierney, L. J. Fleckenstein, and A. J. Ray, "The effects of density and artificial substrate on intensive shrimp Litopenaeus vannamei nursery production," Aquac. Eng., vol. 89, Feb. 2020, DOI: 10.1016/j.aquaeng.2020.102063.

E. Arambul-Muñoz, J. T. Ponce-Palafox, R. C. D. L. Santos, E. A. Aragón-Noriega, G. Rodríguez-Domínguez, and S. G. Castillo-Vargasmachuca, "Influence of stocking density on production and water quality of a photoheterotrophic intensive system of white shrimp (Penaeus vannamei) in circular lined grow-out ponds, with minimal water replacement," Lat. Am. J. Aquat. Res., vol. 47, no. 3, pp. 449–455, 2019.

G. Senthilkumar, C. Rameshkumar, M. N. V. S. Nikhil, and J. N. R. Kumar, "An investigation of nanobubbles in aqueous solutions for various applications," Appl. Nanosci., vol. 8, no. 6, pp. 1557–1567, 2018, DOI: 10.1007/s13204-018-0831-8.

T. Temesgen, T. T Bui, M. Han, T. il Kim, and H. Park, "Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review," Adv. Colloid Interface Sci., vol. 246, pp. 40–51, 2017, DOI: 10.1016/j.cis.2017.06.011.

N. H. Nghia, P. T. Van, P. T. Giang, N. T. Hanh, S. St-Hilaire, and J. A. Domingos, "Control of Vibrio parahaemolyticus (AHPND strain) and improvement of water quality using nanobubble technology," Aquac. Res., vol. 52, no. 6, pp. 2727–2739, 2021.

G. Mahasri, A. Saskia, P. S. Apandi, N. N. Dewi, Rozi, and N. M. Usuman, "Development of an aquaculture system using nanobubble technology for the optimation of dissolved oxygen in culture media for nile tilapia (Oreochromis niloticus)," IOP Conf. Ser. Earth Environ. Sci., vol. 137, no. 1, pp. 012046, 2018,. DOI: 10.1088/1755-1315/137/1/012046.

A. I. Rahmawati, R. N. Saputra, A. Hidayatullah, A. Dwiarto, H. Junaedi, D. Cahyadi, H. K. H. Saputra, W. T. Prabowo, U. K. A. Kartamiharja, H. Shafira, A. Noviyanto, N. T. Rochman, "Enhancement of Penaeus vannamei shrimp growth using nanobubble in indoor raceway pond," Aquac. Fish., 2020, DOI: 10.1016/j.aaf.2020.03.005.

A. M. West, C. S. Jarnevich, N. E. Young, and P. L. Fuller, "Evaluating Potential Distribution of High-Risk Aquatic Invasive Species in the Water Garden and Aquarium Trade at a Global Scale Based on Current Established Populations," Risk Anal., vol. 39, no. 5, pp. 1169–1191, 2019, DOI: 10.1111/risa.13230.

E. S. Y Siregar, V . P.Siregar, R. Jhonnerie, M. Alkayakni, and B. Samsul, "Prediction of potential fishing zones for yellowfin tuna (Thunnus albacares) using maxent models in Aceh province waters," IOP Conf. Ser. Earth Environ. Sci., vol. 284, no. 1, pp. 012029, 2019, DOI: 10.1088/1755-1315/284/1/012029.

I. Yuniarti, K. Glenk, A. McVittie, S. Nomosatryo, E. Triwisesa, T. Suryono, A. B. Santoso, and I. Ridwansyah, "An application of Bayesian Belief Networks to assess management scenarios for aquaculture in a complex tropical lake system in Indonesia," PLoS ONE, vol. 16, pp. 1–23, 2021.

D. P. Galang, A. K. Ashari, L. Sulmatiwi, G. Mahasri, Prayogo, and L. A. Sari, "The oxygen content and dissolved oxygen consumption level of white shrimp Litopenaeus vannamei in the nanobubble cultivation system," IOP Conf. Ser. Earth Environ. Sci., vol. 236, no. 1, pp. 012014, 2019, DOI: 10.1088/1755-1315/236/1/012014.

A. Yusof, A. Y. Sow, M. Z. Ramli, E. Rak, and L. S. Wei, "Growth performance of Asian clam Corbicula fluminea (Müller, 1774) fed with different feeds in laboratory scale culture system," Asian Fish. Sci, vol. 33, no. 1, pp. 50–57, 2020.

H. Khatoon, G. T. G. Yuan, A. I. Mahmud, and M. R. Rahman, "Growth and carotenoid production of Dunaliella salina (Dunal) teodoresco, 1905 cultured at different salinities," Asian Fish. Sci., vol. 33, no. 3, pp. 207–212, 2020.

I. Unal, “Defining an optimal cut-point value in ROC analysis: An alternative approach,†Comput. Math. Methods Med., pp. 1-14, 2017, doi: 10.1155/2017/3762651.

D. Petatán-Ramírez, L. Hernández, E. E. Becerril-García, P. Berúmen-Solórzano, D. Auliz-Ortiz, and H. Reyes-Bonilla, "Potential distribution of the tiger shrimp Penaeus monodon (Decapoda: Penaeidae), an invasive species in the atlantic ocean," Rev. Biol. Trop., vol. 68, no. 1, pp. 156–166, 2020.

L. J. Fleckenstein, N. A. Kring, T. W. Tierney, J. C. Fisk, B. C. Lawson, and A. J. Ray, "The effects of artificial substrate and stocking density on Pacific white shrimp (Litopenaeus vannamei) performance and water quality dynamics in high tunnel-based biofloc systems," Aquac. Eng., vol. 90, pp. 102093, 2020, DOI: 10.1016/j.aquaeng.2020.102093.

L. Zhou, X. Wang, H. J. Shin, J. Wang, R. Tai, X. Zhang, H. Fang, W. Xiao, L. Wang, C. Wang, X. Gao, J. Hu, and L. Zhang, "Ultrahigh Density of Gas Molecules Confined in Surface Nanobubbles in Ambient Water," J. Am. Chem. Soc., vol. 142, no. 12, pp. 5583–5593, 2020, DOI: 10.1021/jacs.9b11303.

M. Junda, "Development of Intensive Shrimp Farming, Litopenaeus vannamei in Land-Based Ponds: Production and Management," J. Phys. Conf. Ser., vol. 1028, no. 1, pp. 012020, 2018, DOI: 10.1088/1742-6596/1028/1/012020.

T. W. Tierney, and A. J. Ray, "Comparing biofloc, clear-water, and hybrid nursery systems (Part I): Shrimp (Litopenaeus vannamei) production, water quality, and stable isotope dynamics," Aquac. Eng, vol. 82, no. Part I, pp. 73–79, 2018, DOI: 10.1016/j.aquaeng.2018.06.002.

E. C. Legarda, S. S. Barcelos, J. C. Redig, N. C. B. Ramírez, A. M. Guimarães, C. M. do E. Santo, W. Q. Seiffert, and F. do N. Vieira, "Effects of stocking density and artificial substrates on yield and water quality in a biofloc shrimp nursery culture," Rev. Bras. Zootec., vol. 47, pp. 20170060, 2018, DOI: 0.1590/rbz4720170060.

M. G. Fregoso-López, M. S. Morales-Covarrubias, M. A. Franco-Nava, J. T. Ponce-Palafox, J. F. Fierro-Sañudo, J. Ramírez-Rochín, and F. Páez-Osuna, "Effect of Nitrogen Compounds on Shrimp Litopenaeus vannamei: Histological Alterations of the Antennal Gland," Bull. Environ. Contam. Toxicol., vol. 100, no. 6, pp. 772–777, 2018, DOI: 10.1007/s00128-018-2349-x.

R. A. González, F. Díaz, A. Licea, A. Denisse Re, L. Noemí Sánchez, and Z. García-Esquivel, "Thermal preference, tolerance and oxygen consumption of adult white shrimp Litopenaeus vannamei (Boone) exposed to different acclimation temperatures," J. Therm. Biol., vol. 35, no. 5, pp. 218–224, 2010, DOI: 10.1016/j.jtherbio.2010.05.004.

P. Piña-valdez, J. F. Arzola-gonzalez, M. Nieves-soto, and M. A. Medina-jasso, "Combined effect of temperature and salinity on oxygen consumption on white shrimp Litopenaeus vannamei postlarvae," Bol. Inst. Pesca, vol. 41, no. 1, pp. 89–101, 2018.

J. N. Meegoda, S. Aluthgun Hewage, and J. H. Batagoda, "Stability of nanobubbles," Environ. Eng. Sci., vol. 35, no. 11, pp. 1216–1227, 2018, DOI: 10.1089/ees.2018.0203.

H. M. Esparza-Leal, J. T. Ponce-Palafox, P. Ãlvarez-Ruiz, E. S. López-Ãlvarez, N. Vázquez-Montoya, M. López-Espinoza, M. M. Mejia, R. L. Gómez-Peraza, and E. Nava-Perez, "Effect of stocking density and water exchange on performance and stress tolerance to low and high salinity by Litopenaeus vannamei postlarvae reared with biofloc in intensive nursery phase," Aquac. Int., vol. 28, no. 4, pp. 1473–1483. 2020, DOI: 10.1007/s10499-020-00535-y.



  • There are currently no refbacks.

Published by INSIGHT - Indonesian Society for Knowledge and Human Development